156 Proc. Japan Acad., 88, Ser. A (2012)

[Vol. 88(A),

A note on linear independence of polylogarithms over the rationals

By Noriko HIRATA-KOHNO® and Hironori OKADA*"

(Communicated by Masaki KASHIWARA, M.J.A., Oct. 12, 2012)

Abstract:

In this article, we give a new lower bound for the dimension of the linear space

over the rationals spanned by 1 and values of polylogarithmic functions at a non-zero rational
number. Our proof uses Padé approximation following the argument of T. Rivoal, however we
adapt a new linear independence criterion due to S. Fischler and W. Zudilin. We also present an
example of the linear space of dimension > 3 over Q, which is generated by 1 and polylogarithms.
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1. Introduction. For s=1,2,---, consider
the polylogarithmic function Lis(z) defined by

©_ k

z
Lis(2) = —,2z€C,|z| <1 (z#1if s=1).
(2) Z = A <1 (24 )
The function satisfies Lij(z) = —log(l—2) =
Fodt * Lig(t
/ and Lisi(2) :/ 1—()dt. We restrict
o 1—¢ ot

ourselves to the case z € R, hence the values of
polylogarithmic functions (so-called polyloga-
rithms) are real numbers. Concerning known prop-
erties of the function, see for example [3]. E. M.
Nikisin [6] and M. Hata [2] investigated sufficient
conditions such that for a rational number «,
the values of polylogarithmic functions Lij(«),
Lis(a), -+, Lis(er) and 1 are linearly independent
over Q. In 2003, T. Rivoal [7] showed a linear
independence result of polylogarithms, stated as
follows.

Theorem A (Rivoal). Let s be an integer
> 2. Leta=p/q € Quithp,q € Z,gcd(p,q) =1 and
0 < la| < 1. For any € > 0, there exists an integer
Ale,p,q) = 1 satisfying the following property. If
s = Ale,p,q), we have

dimq{Q + QLi;(a) + - - + QLis(a)}

1-¢
> og(s).
T+ log(2) 8

A simple corollary of Theorem A is given by:
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Corollary B (Rivoal). For any o € Q with
0<|a|l <1, the set {Lis(a) : s = 1} contains infi-
nitely many irrational numbers.

In Rivoal’s works, it is remarkable that his
statements are valid for any o € Q with 0 < |a| < 1,
which differs from all the previous results. The
proof of Theorem A is based on an important linear
independence criterion due to Yu. V. Nesterenko [5].
In 2006, R. Marcovecchio [4] generalized Theorem A
for an algebraic number a.

S. Fischler and W. Zudilin [1] gave in 2010 a
refinement of Nesterenko’s criterion by means of
geometry of numbers, which is the next theorem.

Theorem C (Fischler-Zudilin). Lets > 1 be
an integer, and &, - - -, & be real numbers. Let 7 > 0
and~y,---vs 2 0. Fori € {0,--+,s} andn =1,2,--,
consider an integer sequence Ui, € Z. For i€
{1,--+,8} andn=1,2,---, let &;,, € Z be a positive
divisor of ¢;,, satisfying both of (i) and (ii):

(1) bin divides 611, for any m =1 and for any
ie{l,---,s—1},

oy Ojn oo Oyt

(ii) divides ——— for anyn > 1 and for any 0 <

in bint1

i< j< s with dpp, =1,
Assume moreover that there exists an increasing
sequence (Qn),s, of integers such that all of the
following conditions are fulfilled as n — oo:

(1) Qn+1 = Q}LJro(l)a

1 1
(2) (I]Q?%XS |£lﬂ| < Q7L+O( )’

(3) Z lin&i
=0

(4) Oim = Qﬁ"*"(l) forany i€ {1,---,s}.

Let M = dimq(Q& + Q& + -+ + Q&) — 1.
we have

_ Q—T+0(1)
n )

Then
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It should be noted that the right-hand side of
the conclusion of Theorem C also contains M. In [1],
it is also achieved to give explicit sufficient con-
ditions to show that at least 3 values of the
Riemann zeta funciton are linearly independent.

Theorem D (Fischler-Zudilin). Lets > 1 be
an integer, and &, - -, & be real numbers. Consider
real numbers 0 < A< 1,B>1. For any n > 1, let

Lo, -, lsn € Z be integers such that
s 1/n
(5) lim Y a6 =A
n—oo i—0
and
(6) lim supl|é,|"" < B

for any i €{0,---,s}. For any n>1, let 6, be a
common positive divisor of li,,- -, lsy. Assume

moreover
(7) AB < lim inf(ged(6,, 8,11)) "™
Then

dimq(Q& + Q& +--- + Q&) > 3.

2. Main theorems. We adopt the criterion
not to the Riemann zeta function but to the
polylogarithmc function. We rely on Theorem C
and Theorem D instead of Nesterenko’s linear
independence criterion, by following Rivoal’s argu-
ment of Padé approximation [7]. First we begin
with a simple statement.

Theorem 1. Le

s > 356. Then for a=

g €Q, with p,qeZ, ged(p,g) =1, 0<laf <1,
1< |p] €49, 2 < |g| < 50, we have
dimq{Q + QLié;(a) + - - - + QLis(v) } > 3.

The new part of the statement comes from the
refinement done in Theorem D and also our new
choice of parameters. A more general statement is
as follows.
Theorem 2.

Let s be an integer > 2. Let
a=2e¢ Q with p, q€Z, ged(p,g)=1 and
0< |(c])z| < 1. Put

M =dimq{Q + QL¢1 (o) + - - - + QLis(a) } — 1.

LetreZ,1 <r < M defined by
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® r= maX{l’ [aog maf{[:s, M})ﬂ} }

where p > 0 arbitrarily chosen and fized, with [a] the
largest integer part < a (floor function). Then we
have

(M—-1)

log T + -
087 2 MM

M=

log |q] r+1 r ’
1+log2+ i —I—( >1og2—|—M10gr

We should note that the right-hand side of the
conclusion of Theorem 2 contains M as in the
statement of Theorem C. Indeed, when we substract
% from the numerator of the right-hand side and
add this part on the left-hand side, then it gives
only an asymptotic formula for M.

3. Proof of Theorem 2. Now we start the
proof of Theorem 2. Let 1<r<s, r, s€Z,
1<me€Z For z€C, |z] >1, consider N,(z) as
follows.

No(z) =l i (k=1)(k=2)-(k—m) _,

2 A 1) (k)
0 (k’— rn)m Lk
N,
k=1 (k)n+1
where (a), is the Pochhammer symbol defined by
(a)g=1,(a),=ala+1)(a+2)---(a+k—1)

(k: 1a2a)
Next we recall Lemma 1 of [7] as follows.
Lemma 3.

N, (2)
rn)! ||f,,1x;1—x,, " dxy - - dx,
( ) /[0,1]“( ( )>

nl" (z—m1 - x5)" 2= T

= n'S*’!‘

Proof. This function is a generalized nearly-
poised hypergeometric series. We do an iteration
of Euler’s identity of integral (see [9], page 108
(4.1.3)) for the function:

(rn)! T(rn+1)°T'(n+1)°
nl”  T((r+1)n+2)°
( m+1,m+1,---,rn+1 ‘ 1)
X s41F', z
(r+1)n+2,---,(r+1)n+2
to obtain the statement. O
Lemma 4. Consider the differential operator

_ 14 Define Ry(t) b
T Map Cme sl oy

N,(2) = P

Dy
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Ro(t) = nts— L=
()41
Then for o € {1,2,---,s},7€{0,1,---,n}, we have
caJn
; ; t+7)°7

where ¢, j, = Ds_o(R,(t)(t + 7)° )|t77] € Q.
Proof. This is done by decomposition into

partial fractions. ([
Lemma 5. Consider c,j, in Lemma 4 for
oce{l,2,---,s},j€{0,1,---,n}. Write
Ponz ZZ%MZ 7
o=1 j=
and

n

Pra) = 3 osn

=0

Then for any z € C,|z| > 1, we have

9) Nn(z) = Pou(

2+ Z Pyn(2)Lis(1/2).

Proof. We use Lemma 4 to rewrite N,(z).
We then obtain:

Il
=
.

Q
~—
[
~
™R
S~—"

Hence the lemma follows. g
Next, be means of the integral representation,
we show that |Nn(z)|1/n is small enough for suffi-
ciently large n.
Lemma 6. For any z€ R,|2| > 1, the se-
quence [N, (2)|V" has a limit point. Write @, (2) =
Jim |N,(2)]"/". Then we have

1

Efa

(10) 0< pra(2) <

Proof. Stirling’s formula implies

. ((m) )“"
lim =7
n—o0 nlr
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Since z € R, |z| > 1, Lemma 3 in [7] implies

r Hi’:l ’U;(l B UU)
prlame=l o 97

. 1/n
nan;O|Nn(z)| "= (z—vyvg - - -w,)"

We now give an upper bound for ¢, s(z).
When £k > rn + 1, we get:

Ry (k)=

(k - :n)rn ‘ |7k < n(sfr)n ke
(k)1 et

n (s—r)n o 1 1 nq
== o[ =< | ) o
k ks |2|"rs=m ) ks

By noting R, (k )—Owhenk—O

Z R, (K)|2| "
k=rn+1
Z -

<
Z| ST 1L
7n+1

which implies the statement. ([
Lemma 7. Foranyo € {0,1,---,s} and
z € C,|z| > 1, we have

(11)

'5—7' | |7rn

X

-,rn, we have

lim sup|Pg1n( )|1/n 2T )
n—oo

Proof. Cauchy integral formula allows us:
1 ~o—1
— R, (2)(z+5)" d=.
lo+jl=1/2

Cojn = i

On the circle z € {z: |z + j| = 1/2}, we have
|(Z - TTL)M| < (.7 + 2)7-71,

and |<Z)n+1| 2 273(3' - 1)'(” _j_ 1)'
Therefore (with a correction of Lemma 4 in [7])
we get:
o (U +2), ,
272G = Din—j— 1Y’

()0

o *(n—4)"(rn+j+1)
j+1

10‘71

|CU~,J~,"| <n

x 8°%.

Since we have

: . !
<m.ﬂ ) < 2, (”) <o, T
J J

we then obtain

Fn—j5)(rm+j+1)
7j+1

< (27 (j(n = j)(rn+ j + 1))

|Ca,j,n| < 27'n+,72nsr’r'n . 85
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which yields n .
A (] - p)fp,a
lim sup |Cw_‘n|1/n < T7‘25+r+1. (DAFo(t)”t:—j = 50.)\ + Z _(*1) ( - .)A+1 ’
n—oo . p=0,p#£j p J
We finally have, for o € {1,---, s}, N G-
j—
(DNH®)| ey = Y () —57

< (n+1) max |cq 2"

Pon(2)] = 0<j<n

§ Co.j, nz

therefore we have limsup | By, (2)|" < 17254+ 2.

n—oo

s n J j—o
Similarly, for Py, = — Z Z Cojm Z Z—g, we
o=1 j=0 k=1 k
have
J g J 1
ppEa FIND pEPND
k=1 k k=1 k
Hence
limsup|P0,"( )|1/n 729+T+1|Z|
n—oo
The statement is achieved. O

3.1. Divisors. Put d,=lem(1,2,---,n),
dy = 1. Now we start an arithmetical argument.

Lemma 8. Foranyo € {0,1,---,s}, we have
(12) d P, (2) € Z[7].

Proof. Fix n and j. Setting F,(t) as follows,
we have by decomposition into partial fractions:

_ (t—no), (J— D) foo
Fol="g. ¢ ‘”Z Ty
P?é]

Similarly, by noting H(t) as below, we have:
n! L\~ U-ph
—(t+)) = Z AN oy

(t n+1 p=0 i+ p
]

H(t) =

Here, we denote by f,, and by h,:

" %_Ip ; n?m -
—-p
h=0,hp
()G
et e ()

II p+n

h=0,h#p

For an integer A\ >
A > 0. Then we have

0, let o =1 and 6y =0 if

p=0,p#j (p J )

Thus for any integer 0 < A € Z, we have shown for

d, =lem(1,2,---,n):

d)(DyF,(t)) €Z, d\Dy\H(t)) €z

|1‘—7] |f—7]

For p e N® with py +---
tain by Leibniz formula:

Dy—o(R(t)(t +)°)
_ZDMFl D F)(D#HH)

+ ps = s — o, we ob-

(D, H).

We get d¥ ¢, € Z namely d P, ,(z) € Z[z]. O
Recall « = p/q € Q, 0 < |a| < 1. We set

(13) Pon = dzpnptr,n(q/p)a o< {07 T 8}7

gn = dipnNn(Q/p) = Po.n + an',nLi(r(a)-
o=1

Putting
(14) A = e’|plors(1/a),
(15) B = es|q|2.s+'r'+1,’,r7

we have A >0 and B> 1. By writing [B"] the
largest integer < B" (floor function), we set

(16) Qu=[B+1.

Lemma 6 shows that the quantity A is small
enough. On the other hand, by an explicit version
of Prime Number Theorem in [8], we have estimates

for d,.
Theorem E (Rosser and Schoenfeld).
515
etR=———= and
(V546 — /322)?

(n) = (logn)""? exp{—+/(logm) / B}
Then for any n >
(17) n{l —e(n)} < <n{l+e(n)}.

3.2. Parameters. Theorem E gives us
together with (10), (11) and (17):

(18) log |p<7JL|1/n < log B+ o(1),
(19) log |€,]"™ = log A + o(1),
on the other hand, by definition of [-], we have

2, we have

logd,



160 N. HIRATA-KOHNO and H. OKADA [Vol. 88(A),

20 w1 = QLW Viogn

(20) Qni1 =Qn Proof. Since g(n) = _VOSR o(1), we have
1+o(1

(21) |p0,n| < Qn+0( ) e (logn)/R

Moreover, Lemma 8 says d’ 7P, ,(z) € Z[z], hence

by definition of p,, in (13), we have
Pon = d;pnpa,n(Q/p) = dz X dfl_apnpa,n(Q/p)

namely

Pon
dO'

n

SV

(22)

Here, o(1) is defined with respect to n.

By the fact (22), the Fischler-Zudilin criterion
gives a contribution which allows us to obtain the
final lower bound below in the forthcoming part of
our proof:

g

logB’

M
T =T
o=1

If we use Nesterenko’s criterion, then the final lower
bound is 7.
We now choose the parameter .

Proposition 9. Put
log A
(23) r=—5L
log B
Then we have
(24) [l = @70

where o(1) is defined with respect to n.
Proof. By (19) and by definition of @Q,, we
have

log |, log |, ]
log([B"] +1) ~ (n+1)logB

_ (4 1 (l/n)log|€n|_logA+
B n+1 logB  logB

o(1).

On the other hand, we see:

log |, log|l,| logA
og|tn| _ _loglnl _ log o),
log([B"] +1) nlogB logB
The definition of 7 yields the statement. O
Proposition 10. Put
o
25 - = .
(25) % = iog B

Then we have

(26) 7 = Qo).

ologd, < o{l —e(n)}in
log([B"]+1)~ (n+1)logB

:(;(1— ! )1_5(n) 7_+o().

n+1/) logB - log B
Similarly,
ologd, < o{l+¢e(n)}n __o of1).
log([B"] + 1) nlog B log B
Therefore
o log d?
s =T—= =" 1) = —
i log B Yo +o(l) log([B"] + 1)
which is the statement. O

Proposition 11. Let

Then

d, =lem(1,2,---,n).

d; divides dzﬂ for anym > 1,
<

A7 divides di:f foranyn>1 0<o<d <.
Proof. Obvious. O
3.3. Choice of r. We start our proof of
Theorem 2. We may suppose M > 3 since when
M =1 and M = 2, the statement is trivial.

By writing [a] the largest integer part < a (floor
function), we recall the choice of r € Z in (8) given
by

r= maX{L [(logmai\f& M})p} }

with p > 0 arbitrarily chosen and fixed, [a] the
largest integer part < a (floor function).

Then thanks to (18) (19) (20) (21) (22) (24)
(26) with Proposition 11, the hypothesis of
Theorem C are satisfied with respect to 6;, = d;
(here, we understand ¢ = o). The relations (14) (15)
(23) (25) yield

MZ14+v+ v
M(M+1)
—M —log|p| 4+ (M —r)logr + =—5—
~ M +log|q| + (M +7+1)log2+rlogr
Hence the conclusion follows.
4. Proof of Theorem 1. Our Theorem 1 is

a consequence of Theorem D whenever

(27) AB < lim inf(ng(ém 677,+1))1/n

where 6, is a common divisor of py,, - -
case, we take 6, = d,,.

-, Dsn. In our
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Choose r € Z,
p=3/2:

28 r =max< 1, i .
(28) { [(logmax{&s})sm]}

Our construction of the sequence p,, satisfies
the hypothesis (5) (6) (7). Define the function

T(s,7,p,q) = slogr+1—2s— (s+7r+1)log2
—2rlogr —log|p| — log|g|.

Let r be as (28). The function
T(s,1,49,50) is discontinuous (because of the floor
function in r), however it has a zero at s=
355.99... and T(s,7,49,50) is increasing when
s> 300. Then for all 1 < |p| <49 and 2 < |¢| < 50,
we have T'(s,r,p,q) > 0 if s > 356. For such p, ¢, the
condition (27) is verified by our definition of A, B.

The statement of Theorem 1 is therefore
achieved.

1<r<s for example with

chosen in
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