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Abstract: We observe properties of coefficients of certain basis elements for the space of

weakly holomorphic modular forms of weight 2 for SL2ðZÞ. Moreover we show that these

coefficients are often highly divisible by the primes 2, 3, 5, 7, 11.
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1. Introduction. Let k be any even integer.

A weakly holomorphic modular form of weight k for

SL2ðZÞ is a holomorphic function on the upper half

plane H, but may have poles at the cusp 1 which

satisfies the modular transformation

fð�zÞ ¼ ðczþ dÞkfðzÞ for any

� ¼
a b

c d

� �
2 SL2ðZÞ:

Since SL2ðZÞ has only one cusp, for each even integer

k there is a canonical basis for the spaceM !
k of weakly

holomorphic modular forms of weight k, indexed by

the order of the pole at1. To be more precise, write

k ¼ 12lþ k0 with k0 2 f0; 4; 6; 8; 10; 14g. Then for

each integer m � �l, Duke and Jenkins [3] showed

that there exists a unique weakly holomorphic

modular form fk;m of weight k with a q-expansion

of the form

fk;mðzÞ ¼ q�m þOðqlþ1Þ:

Throughout this paper q ¼ e2�iz. Since for all non-

zero f 2M !
k we have ord1ðfÞ � l, the functions fk;m

form a basis for M !
k. Indeed, they constructed the

basis elements fk;m from the classical discriminant

function �, the modular invariant j and the

Eisenstein series Ek0 (we let E0 ¼ 1) as follows:

We recall

�ðzÞ ¼ q
Y
n�1

ð1� q24Þn ¼
X
n�1

�ðnÞqn;

ErðzÞ ¼ 1�
2r

Br

X1
n¼1

�r�1ðnÞqn

and

jðzÞ ¼ E4ðzÞ3=�ðzÞ ¼
X
n��1

cðnÞqn;

where Br is the r-th Bernoulli number and �r�1

stands for the usual divisor sum. We have that

fk;�l ¼ �ðzÞlEk0 . Now for each n � 1, we obtain

fk;�lþn by multiplying fk;�lþn�1 by j and then

substracting off multiples of fk;�lþd in order to kill

successively the coefficients of ql�d for 0 � d �
n� 1. This construction shows that

fk;m ¼ �lEk0Fk;DðjÞ;

where Fk;DðxÞ is a monic polynomial in x of degree

D ¼ jþm with integer coefficients. Motivated by

work of Zagier, the forms fk;0 play an important role

in the study of singular moduli and the polynomials

Fk;DðxÞ are a generalization of the classical Faber

polynomials F0;mðxÞ.
Throughout this paper we define the Fourier

coefficients akðm;nÞ of these basis elements fk;m by

fk;mðzÞ ¼ q�m þ
X
n>l

akðm;nÞqn:

Here we note that the coefficients akðm;nÞ are

integral.

Noticing f12;�1 ¼ � and f0;1 ¼ j� 744 we

know that Ramanujan [8] showed a12ð�1; 2nÞ �
0 ðmod 2Þ, a12ð�1; 3nÞ � 0 ðmod 3Þ; a12ð�1; 5nÞ �
0 ðmod 5Þ and Lehner [6,7] showed

a0ð1; 2a3b5c7d11nÞ � 0 ðmod 23aþ832bþ35cþ17d11Þ:

Recently Duke and Jenkins [3] studied congru-

ence properties of the basis elements fk;m. In

particular they showed the following
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Theorem 1.1 [3, Corollary 1]. For any even

integer k and any integers m, n we have that

akðm;nÞ ¼ �a2�kðn;mÞ:

Theorem 1.2 [3, Lemma 1]. Let p ba a

prime and k 2 f4; 6; 8; 10; 14g. Then for m;n; s 2 Z,

with n;m; s > 0 we have that

akðm;npsÞ ¼ psðk�1Þðakðmps; nÞ � akðmps�1; n=pÞÞ
þ akðm=p; nps�1Þ:

By using Theorem 1.1 and Theorem 1.2, Doud

and Jenkins [2, Theorem 1.3] proved that the

coefficients akðm;nÞ are often highly divisible by

the primes 2, 3, 5 when k 2 f4; 6; 8; 10; 14g. In this

paper we observe divisibility properties of the

coefficients a2ðm;nÞ.
For each prime p, the Hecke operator Tp for

weight 2 weakly holomorphic modular forms to

weight 2 weakly holomorphic modular forms is

defined by

ðf2;mjTpÞðzÞ ¼
X
n

a2ðm;npÞ þ pa2 m;
n

p

� �� �
qn;

where a2ðm; npÞ ¼ 0 if p does not divide n. Since

there is no holomorphic modular form of weight 2

for SL2ðZÞ and the functions fk;m form a basis for

M !
k, following the argument in [3] we obtain

a2ðm;npÞ ¼ p a2ðmp; nÞ � a2 m;
n

p

� �� �
ð1Þ

þ a2
m

p
; n

� �
:

By (1) and the same arguments in [3] we obtain

the following proposition.

Proposition 1.3. For each prime p and any

positive integers n, m, s we have that

a2ðm;npsÞ ¼ ps a2ðmps; nÞ � a2 mps�1;
n

p

� �� �

þ a2
m

p
; nps�1

� �
:

Applying induction to this proposition, we

obtain the following

Corollary 1.4. Let ðm; pÞ ¼ ðn; pÞ ¼ 1, r > 0

and s � 1. Then for 0 � t � minðr; s� 1Þ, we have

that

a2ðmpr; npsÞ ¼ a2ðmpr�t�1; nps�t�1Þ

þ
Xt
j¼0

pðs�jÞa2ðmprþs�2j; nÞ:

Proposition 1.3 also implies the following

corollary.

Corollary 1.5. If prjn and p - m then

prja2ðm;nÞ. In particular, if ðm;nÞ ¼ 1, we have

nja2ðm;nÞ.
In this paper by combining ideas of Doud

and Jenkins [2] with ideas of Lehner [6,7] we

prove the following theorems making above

divisibility results more explicit. For each integer

N, let vpðNÞ be the largest integer s such that

psjN.

Theorem 1.6. We have the following in-

equalities: For all positive integers m, n,

(i)

v2ða2ðm;nÞÞ

�
3ðv2ðmÞ � v2ðnÞÞ þ 8 if v2ðmÞ > v2ðnÞ
4ðv2ðnÞ � v2ðmÞÞ þ 8 if v2ðnÞ > v2ðmÞ:

�

(ii)

v3ða2ðm;nÞÞ

�
2ðv3ðmÞ � v3ðnÞÞ þ 3 if v3ðmÞ > v3ðnÞ
3ðv3ðnÞ � v3ðmÞÞ þ 3 if v3ðnÞ > v3ðmÞ:

�

(iii)

v5ða2ðm;nÞÞ

�
v5ðmÞ � v5ðnÞ þ 1 if v5ðmÞ > v5ðnÞ
2ðv5ðnÞ � v5ðmÞÞ þ 1 if v5ðnÞ > v5ðmÞ:

�

(iv)

v7ða2ðm;nÞÞ

�
v7ðmÞ � v7ðnÞ if v7ðmÞ > v7ðnÞ
2ðv7ðnÞ � v7ðmÞÞ if v7ðnÞ > v7ðmÞ:

�

(v)

v11ða2ðm;nÞÞ

�
1 if v11ðmÞ > v11ðnÞ
v11ðnÞ � v11ðmÞ þ 1 if v11ðnÞ > v11ðmÞ:

�

Remark 1.7. By the duality a0ðn;mÞ ¼
�a2ðm;nÞ (Theorem 1.1), The Theorem 1.6 also

gives the corresponding results for a0ðn;mÞ.
2. Preliminaries. Let p be a prime, and

�0ðpÞ be the subgroup of SL2ðZÞ consisting of

elements � with � � � �
0 �

� �
ðmod pÞ. For a weakly

holomorphic modular form f of weight k for SL2ðZÞ
we introduce the linear operator

UpfðzÞ ¼
1

p

Xp�1

�¼0

f
zþ �
p

� �
:
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It is well known [1, Theorem 4.5] [4, Propersition 2.22]

that Upf is a weakly holomorphic modular form of

weight k for �0ðpÞ and if fðzÞ ¼
P

n�s anq
n then

fp :¼ Upf ¼
X

n�½s=p�
apnq

n:

We denote UpðUa
p fÞ by Uaþ1

p f for each positive

integer a, where U1
p f ¼ Upf .

Lemma 2.1. [2, Corollay 4.2] Let f ba a

weakly holomorphic modular form of weight k for

SL2ðZÞ. Then

pðpzÞ�kfpð�1=ðpzÞÞ ¼ �fðzÞ þ pfpðpzÞ þ pkfðp2zÞ:

Further, pðpzÞ�kfpð�1=ðpzÞÞ is a weakly holomor-

phic modular form of weight k on �0ðpÞ:
Since the subgroups �0ðpÞ are of genus zero

for the primes p 2 f2; 3; 5; 7g, they have univalent

functions, which may [6,7] be taken as

�ðzÞ ¼ �p;rðzÞ ¼
�ðpzÞ
�ðzÞ

� �r
¼ q þ � � � ;

with

�ðzÞ ¼ q
1
24

Y
n�1

ð1� qnÞ;

and

rðp� 1Þ ¼ 24:

Let jpðzÞ ¼ 1=�p;rðzÞ. Then we have that jp is

holomorphic on the upper half plane H, has a

simple pole at the cusp 1 and

jpð�1=ðpzÞÞ ¼ pr=2�p;rðzÞ:ð2Þ

For (2) see [5, (8.83)]. Indeed by the transformation

law of � we can easily show (2). Moreover jp and �

have integral Fourier coefficients.

From now on, for each positive integer m we

let

fðzÞ ¼ f0;mðzÞ ¼
1

qm
þOðqÞ

and assume that the prime p does not divide m.

Then fp is holomorphic on H and at the cusp 1.

Moreover from Lemma 2.1 we have

pfpð�1=ðpzÞÞ ¼ �fðzÞ þ pfpðpzÞ þ fðp2zÞ;

which is a weakly holomorphic modular form of

weight 0 for �0ðpÞ, holomorphic at the cusp 0 and

meromorphic at the cusp1 having integral Fourier

coefficients in the q-expansion at 1. Thus for each

prime p 2 f2; 3; 5; 7g, there exist integers At;p such

that

pfpð�1=ðpzÞÞ ¼
X
t�0

At;pjpðzÞt:

Replacing z by �1=ðpzÞ, we obtain the following

theorem.

Theorem 2.2. For each prime p 2 f2; 3; 5; 7g,
there exist integers Dt ¼ Dt;p such that

fpðzÞ ¼ D0;p þ
X
t�1

Dt;pp
rt=2�1�ðzÞt:

3. Proofs of Theorems. In this section we

use the same notations and assumptions in Section

2. We first prove Theorem 1.6(i).

Proof. Let p ¼ 2. Then r ¼ 24 and we can

rewrite f2 in Theorem 2.2 as

f2 ¼ B0 þ 211
X
t�1

Bt2
8ðt�1Þ�t ¼ B0 þ 211R;ð3Þ

where R is a polynomial of the form

R ¼
X
t�1

dt2
8ðt�1Þ�t

with integers dt. R will denote a polynomial of this

type, not necessarily the same one at each appear-

ance. Applying the operator U2 to both sides in (3)

we obtain

U2
2f ¼ B0 þ 211

X
t�1

Bt2
8ðt�1ÞU2�t ¼ B0 þ 211U2R:ð4Þ

In the above equations B0ts are integers.

Proposition 3.1. For each positive integer

h, we have that 28ðh�1ÞU2�h ¼ 23R.

Proof. See [7, (3.4)] �

This proposition implies that for each positive

integer a,

Ua
2 f ¼ A0 þ 21123ða�1ÞR � A0 ðmod 23aþ8Þ;

which says

a2ð2an;mÞ � �a0ðm; 2anÞ � 0 ðmod 23aþ8Þ:ð5Þ

Now in Corollary 1.4 if r > s then take t ¼ s� 1.

Thus for ðm; 2Þ ¼ ðn; 2Þ ¼ 1, r > 0 and s � 1, from

(5) we have that

a2ðm2r; n2sÞ ¼ a2ðm2r�s; nÞ

þ
Xs�1

j¼0

2ðs�jÞa2ðm2rþs�2j; nÞ � 0 ðmod 23ðr�sÞþ8Þ:
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If r < s then take t ¼ r in Corollary 1.4. Thus for

ðm; 2Þ ¼ ðn; 2Þ ¼ 1, r > 0 and s � 1, from (5) we

have that

a2ðm2r; n2sÞ ¼
Xr
j¼0

2ðs�jÞa2ðm2rþs�2j; nÞ

� 0 ðmod 24ðs�rÞþ8Þ
which implies the assertion. �

We prove Theorem 1.6(ii).

Proof. Let p ¼ 3. Then r ¼ 12 and we can

rewrite f3 in Theorem 2.2 as

f3 ¼ B0 þ 35
X
t�1

Bt3
4ðt�1Þ�t:ð6Þ

Proposition 3.2. For each positive integer

h, we have that 34ðh�1ÞU3�h ¼ 32T , where T is a

polynomial of the form T ¼
P

t�1 dt3
4ðt�1Þ�t with

integers dt.

Proof. See [7, (3.24)] �

This proposition implies that for each positive

integer a,

Ua
3 f ¼ A0 þ 32aþ3T � A0 ðmod 32aþ3Þ;

which says

a2ð3an;mÞ � �a0ðm; 3anÞ � 0 ðmod 32aþ3Þ:ð7Þ

Now in Corollary 1.4 if r > s then take t ¼ s� 1.

Thus for ðm; 3Þ ¼ ðn; 3Þ ¼ 1, r > 0 and s � 1, from

(7) we have that

a2ðm3r; n3sÞ ¼ a2ðm3r�s; nÞ

þ
Xs�1

j¼0

3ðs�jÞa2ðm3rþs�2j; nÞ � 0 ðmod 32ðr�sÞþ3Þ:

If r < s then take t ¼ r. Thus for ðm; 3Þ ¼ ðn; 3Þ ¼ 1,

r > 0 and s � 1, from (5) we have that

a2ðm3r; n3sÞ ¼
Xr
j¼0

3ðs�jÞa2ðm3rþs�2j; nÞ

� 0 ðmod 33ðs�rÞþ3Þ

which implies the assertion. �

We prove Theorem 1.6(iii).

Proof. Let p ¼ 5. Then r ¼ 6 and we can

rewrite f5 in Theorem 2.2 as

f5 ¼ B0 þ
X
t�1

Bt5
3t�1�t ¼ B0 þ 52Q;ð8Þ

where Q is a polynomial of the form Q ¼ b1�þP
t�2 bt5

t�t with integers bl.

Proposition 3.3. For each positive integer

h > 1, we have that U5� ¼ 5Q and 5hU5�h ¼ 5Q,

where Q is a polynomial of the form Q ¼ b1�þP
t�2 bt5

t�t with integers bl.

Proof. See [6, (5.13), (5.14)] �

This proposition implies that for each positive

integer a,

Ua
5 f ¼ A0 þ 5aþ1Q � A0 ðmod 5aþ1Þ;

which says

a2ð5an;mÞ � �a0ðm; 5anÞ � 0 ðmod 5aþ1Þ:ð9Þ

Now similar method in the proof of Theorem 1.6(i)

show the assertion. �

We prove Theorem 1.6(iv).

Proof. Let p ¼ 7. Then r ¼ 4 and we can

rewrite f7 in Theorem 2.2 as

f7 ¼ B0 þ
X
t�1

Bt7
2t�1�t ¼ B0 þQ;ð10Þ

where Q is a polynomial of the form Q ¼ b1�þP
t�2 bt7

t�t with integers bl.

Proposition 3.4. For each positive integer

h > 1, we have that U7� ¼ 7Q and 7hU7�h ¼ 7Q,

where Q is a polynomial of the form Q ¼ b1�þP
t�2 bt7

t�t with integers bl.

Proof. See [6, Section 6] �

This proposition implies that for each positive

integer a,

Ua
7 f ¼ A0 þ 7aQ � A0 ðmod 7aÞ;

which says

a7ð7an;mÞ � a0ðm; 7anÞ � 0 ðmod 7aÞ:ð11Þ

Now similar method in the proof of Theorem 1.6(i)

show the assertion. �

Lastly we prove Theorem 1.6(v). Since the

genus of �0ð11Þ is not zero, we face a new situation.

We need another modular form instead of jp as

follows: Following the notation in [5] we have

modular functions for �0ð11Þ which are holomorphic

on H and have integral Fourier coefficients

[5, (4.51), (6.44), (6.46) and Lemma 3] as follows:

AðzÞ ¼ A
�1

11z

� �
¼

1

q
þ 6þ 17q þ 46q2 þ � � � ;

CðzÞ ¼ q þ 5q2 þ � � � ;

112C
�1

11z

� �
¼

1

q2
þ

2

q
þ � � � :
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Letting

�ðzÞ ¼ 112C
�1

11z

� �
¼

1

q
þ � � � ;

	ðzÞ ¼ 112C
�1

11z

� �
AðzÞ ¼ 1

q2
þ � � � ;

we come up with

11f11
�1

11z

� �
¼

X
a�0;b�0

Dab�ðzÞa	ðzÞb

for some integers Dab. Now replacing z by �1=11z
we obtain that

11f11ðzÞ ¼
X

a�0;b�0

Dab�
�1

11z

� �a
	
�1

11z

� �b

¼
X

a�0;b�0

Dab112ðaþbÞCðzÞaþbAðzÞb;

which implies that f11ðzÞ � A0 (mod 11) for some

integer A0 and hence a2ð11n;mÞ ¼ �a0ðm; 11nÞ �
A0 (mod 11).

Now in Corollary 1.4 if r > s then take t ¼
s� 1 and if r < s then take t ¼ r. Then by the same

argument in the above case we have the assertion.
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