On the linearity of some sets of sequences defined by L_{p}-functions and L_{1}-functions determining ℓ_{1}

Dedicated to Prof. Shinnosuke Oharu on his 70th birthday

By Gen Nakamura*) and Kazuo Hashimoto ${ }^{* *)}$

(Communicated by Masaki Kashiwara, m.J.A., April 12, 2011)

Abstract

In this paper, we discuss the linearity of a sequence space $\Lambda_{p}(f)$, and the conditions such that $\ell_{1}=\Lambda_{1}(f)$ holds are characterized in term of the essential bounded variation of $f \in L_{1}(\mathbf{R})$, i.e. $\ell_{1}=\Lambda_{1}(f)$ if and only if $f \in B V(\mathbf{R})$.

Key words: Sequence space; linearity; essential bounded variation; Sobolev space.

1. Introduction. Let $f(\neq 0)$ be an L_{p}-function defined on the real line \mathbf{R} and assume $1 \leq p<$ $+\infty$. For a sequence of real numbers $\boldsymbol{a}=\left(a_{n}\right) \in$ \mathbf{R}^{∞}, define

$$
\Psi_{p}(\boldsymbol{a} ; f):=\left(\sum_{k} \int_{\mathbf{R}}\left|f\left(x-a_{k}\right)-f(x)\right|^{p} d x\right)^{1 / p}
$$

and

$$
\Lambda_{p}(f):=\left\{\boldsymbol{a} \in \mathbf{R}^{\infty}: \Psi_{p}(\boldsymbol{a} ; f)<+\infty\right\} .
$$

The following results are known (cf. [1]):

- For every $\boldsymbol{a}=\left(a_{n}\right) \in \mathbf{R}^{\infty}$,
$\Psi_{p}(|\boldsymbol{a}| ; f)=\Psi_{p}(\boldsymbol{a} ; f)$, where $|\boldsymbol{a}|=\left(\left|a_{n}\right|\right)$;
- $\Psi_{p}(\boldsymbol{a}-\boldsymbol{b} ; f) \leq \Psi_{p}(\boldsymbol{a} ; f)+\Psi_{p}(\boldsymbol{b} ; f)$ for every $\boldsymbol{a}, \boldsymbol{b} \in \mathbf{R}^{\infty}$, i.e, the sets $\Lambda_{p}(f)$ are additive subgroups of \mathbf{R}^{∞}.
Let $W^{1, p}(\mathbf{R})$ be a Sobolev space, i.e, $f \in$ $W^{1, p}(\mathbf{R})$ if and only if $f \in L_{p}(\mathbf{R})$ and the derivative $D f$ of f in the sense of distribution belongs to $L_{p}(\mathbf{R})$. In particular, if $f \in L^{1}(\mathbf{R})$ and $D f$ is a Radon measure of bounded variation on \mathbf{R}, f called a function of bounded variation. The class of all such functions will be denoted by $B V(\mathbf{R})$. Thus, $f \in B V(\mathbf{R})$ if and only if there is a Radon measure μ defined in \mathbf{R} such that $|\mu|(\mathbf{R})<+\infty$ and

$$
\int_{\mathbf{R}} f \varphi^{\prime} d x=-\int \varphi d \mu, \varphi \in C_{0}^{\infty}(\mathbf{R})
$$

where, $|D f|(\mathbf{R})=|\mu|(\mathbf{R})$ means the total variation of μ.

[^0]It is obvious that a function f on \mathbf{R} is absolutely continuous and the derivative f^{\prime} is in $L_{1}(\mathbf{R})$, then f is of bounded variation. In particular, $W^{1,1}(\mathbf{R}) \subset B V(\mathbf{R})($ see $[3])$.

In [1], A. Honda, Y. Okazaki and H. Sato provided the following results:
(i) $([1$, Theorem 1, Theorem 2]) If $1 \leq p<+\infty$ and $f(\neq 0) \in L_{p}(\mathbf{R})$, then $\Lambda_{p}(f) \subset \ell_{p}$. In particular, $f \in W^{1, p}(\mathbf{R})$ implies $\ell_{p}=\Lambda_{p}(f)$.
(ii) $([1$, Corollary 4]) If $1<p<+\infty$ and $f(\neq 0) \in$ $L_{p}(\mathbf{R})$, then $\ell_{p}=\Lambda_{p}(f)$ if and only if $f \in W^{1, p}(\mathbf{R})$.

In (ii), we should note that the case of $p=1$ is excluded. In this paper, we discuss the linearity of the space $\Lambda_{p}(f)$, and the conditions such that $\ell_{1}=$ $\Lambda_{1}(f)$ holds are characterized in term of the essential bounded variation of $f \in L_{1}(\mathbf{R})$, i.e. $\ell_{1}=$ $\Lambda_{1}(f)$ if and only if $f \in B V(\mathbf{R})$ (Theorem 3.5).
2. The linearity of $\boldsymbol{\Lambda}_{\boldsymbol{p}}(f)$. We first give necessary and sufficient conditions for the linearity of $\Lambda_{p}(f)$.

Theorem 2.1. Let $1 \leq p<+\infty$ and $f(\neq 0) \in$ $L_{p}(\mathbf{R})$. Then the following are equivalent:
(i) $\Lambda_{p}(f)$ is a linear subspace of \mathbf{R}^{∞};
(ii) For any $0 \leq k \leq 1$, there exists a constant $C(k)>0$ such that

$$
\begin{aligned}
& \int_{\mathbf{R}}|f(x-k a)-f(x)|^{p} d x \\
& \quad \leq C(k) \int_{\mathbf{R}}|f(x-a)-f(x)|^{p} d x, \forall a>0
\end{aligned}
$$

(iii) There exits a constant $C>0$ such that

$$
\begin{aligned}
& \int_{\mathbf{R}}|f(x-k a)-f(x)|^{p} d x \\
& \quad \leq C \int_{\mathbf{R}}|f(x-a)-f(x)|^{p} d x, 0 \leq \forall k \leq 1, \forall a>0
\end{aligned}
$$

Proof. Since $\Lambda_{p}(f)$ is additive as mentioned in the introduction, it suffices to show that $\alpha \in \mathbf{R}$ and $\boldsymbol{a} \in \Lambda_{p}(f)$ implies $\alpha \boldsymbol{a} \in \Lambda_{p}(f)$. Condition (ii) means that $\boldsymbol{a} \in \Lambda_{p}(f)$ implies $\alpha \boldsymbol{a} \in \Lambda_{p}(f)$ for all $0 \leq \alpha \leq 1$. Since $\Lambda_{p}(f)$ is an additive group, we see that $\alpha \in \mathbf{R}$ and $\boldsymbol{a} \in \Lambda_{p}(f)$ implies $\alpha \boldsymbol{a} \in \Lambda_{p}(f)$. Thus we see that $\Lambda_{p}(f)$ is linear.

Conversely, suppose that (ii) does not hold. Then there exists $0<k_{0} \leq 1$ such that for any natural number n, we can take $a_{n}>0$ such that

$$
\begin{align*}
& \int_{\mathbf{R}}\left|f\left(x-k_{0} a_{n}\right)-f(x)\right|^{p} d x \tag{2.1}\\
& \quad>3^{n} \int_{\mathbf{R}}\left|f\left(x-a_{n}\right)-f(x)\right|^{p} d x
\end{align*}
$$

On the other hand, we have
(2.2) $\int_{\mathbf{R}}\left|f\left(x-k_{0} a_{n}\right)-f(x)\right|^{p} d x$

$$
\begin{aligned}
& \leq \int_{\mathbf{R}}\left(\left|f\left(x-k_{0} a_{n}\right)\right|+|f(x)|\right)^{p} d x \\
& \leq 2^{p-1}\left\{\int_{\mathbf{R}}\left|f\left(x-k_{0} a_{n}\right)\right|^{p} d x+\int_{\mathbf{R}}|f(x)|^{p} d x\right\} \\
& =2^{p}\|f\|_{L_{p}}^{p}
\end{aligned}
$$

Since $f(\neq 0) \in L_{p}$, we have

$$
\left\|f\left(\cdot-a_{n}\right)-f(\cdot)\right\|_{L_{p}} \neq 0
$$

We have from (2.1) and (2.2) that

$$
0<\int_{\mathbf{R}}\left|f\left(x-a_{n}\right)-f(x)\right|^{p} d x<\frac{2^{p}}{3^{n}}\|f\|_{L_{p}}^{p}<2^{p-n}\|f\|_{L_{p}}^{p}
$$

Also, for each n, let $N(n)$ be the maximum of a natural number N such that the following inequality holds

$$
\begin{equation*}
N \int_{\mathbf{R}}\left|f\left(x-a_{n}\right)-f(x)\right|^{p} d x \leq 2^{p-n}\|f\|_{L_{p}}^{p} \tag{2.3}
\end{equation*}
$$

Form the maximality of $N(n)$ we have

$$
\begin{aligned}
2^{p-n}\|f\|_{L_{p}}^{p} & <(N(n)+1) \int_{\mathbf{R}}\left|f\left(x-a_{n}\right)-f(x)\right|^{p} d x \\
& \leq 2 N(n) \int_{\mathbf{R}}\left|f\left(x-a_{n}\right)-f(x)\right|^{p} d x
\end{aligned}
$$

and hence form this equality and (2.1), we have

$$
\begin{aligned}
2^{p-n-1}\|f\|_{L_{p}}^{p} / N(n) & <\int_{\mathbf{R}}\left|f\left(x-a_{n}\right)-f(x)\right|^{p} d x \\
& <\frac{1}{3^{n}} \int_{\mathbf{R}}\left|f\left(x-k_{0} a_{n}\right)-f(x)\right|^{p} d x .
\end{aligned}
$$

Thus we have
(2.4) $\quad(3 / 2)^{n} 2^{p-1}\|f\|_{L_{p}}^{p}$

$$
<N(n) \int_{\mathbf{R}}\left|f\left(x-k_{0} a_{n}\right)-f(x)\right|^{p} d x
$$

Let $N(0)=0$, and define a sequence $\boldsymbol{b}=\left(b_{n}\right)$ in the following way

$$
b_{j}=a_{k}, 1+\sum_{i=0}^{k-1} N(i) \leq j \leq \sum_{i=0}^{k} N(i)
$$

where $j, k=1,2,3, \cdots$. Then, from (2.3) we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \int_{\mathbf{R}}\left|f\left(x-b_{n}\right)-f(x)\right|^{p} d x \\
& \quad=\sum_{n=1}^{\infty} N(n) \int_{\mathbf{R}}\left|f\left(x-a_{n}\right)-f(x)\right|^{p} d x . \\
& \quad \leq\|f\|_{L_{p}}^{p} \sum_{n=1}^{\infty} 2^{p-n}<+\infty .
\end{aligned}
$$

Hence $\boldsymbol{b} \in \Lambda_{p}(f)$.
On the other hand, using (2.4) we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \int_{\mathbf{R}}\left|f\left(x-k_{0} b_{n}\right)-f(x)\right|^{p} d x \\
& \quad=\sum_{n=1}^{\infty} N(n) \int_{\mathbf{R}}\left|f\left(x-k_{0} a_{n}\right)-f(x)\right|^{p} d x \\
& \quad \geq \sum_{n=1}^{\infty}\left(\frac{3}{2}\right)^{n} 2^{p-1}\|f\|_{L_{p}}^{p}=+\infty
\end{aligned}
$$

This means $k_{0} \boldsymbol{b} \notin \Lambda_{p}(f)$. Hence we have (i) \Leftrightarrow (ii).
Next, we show that (ii) \Leftrightarrow (iii). Since it is obvious that (iii) \Rightarrow (ii), it is sufficient to prove that (ii) \Rightarrow (iii). Put

$$
M(k)=\sup _{a>0} \frac{\|f(\cdot-k a)-f(\cdot)\|_{L_{p}}}{\|f(\cdot-a)-f(\cdot)\|_{L_{p}}}
$$

for $k \in \mathbf{R}$. Then for $k_{1}, k_{2} \in \mathbf{R}$, we have the following inequality

$$
\begin{aligned}
& M\left(k_{1}+k_{2}\right) \\
& \quad=\sup _{a>0} \frac{\left\|f\left(\cdot-\left(k_{1}+k_{2}\right) a\right)-f(\cdot)\right\|_{L_{p}}}{\|f(\cdot-a)-f(\cdot)\|_{L_{p}}} \\
& \quad \leq \sup _{a>0} \frac{\left\|f\left(\cdot-k_{1} a\right)-f(\cdot)\right\|_{L_{p}}+\left\|f\left(\cdot-k_{2} a\right)-f(\cdot)\right\|_{L_{p}}}{\|f(\cdot-a)-f(\cdot)\|_{L_{p}}} \\
& \quad \leq M\left(k_{1}\right)+M\left(k_{2}\right) .
\end{aligned}
$$

Now, suppose that (iii) does not hold, and thus $\sup _{0 \leq k \leq 1} M(k)=\infty$. Let $\left(k_{n}\right)$ be a sequence in $[0,1]$ such that $M\left(k_{n}\right) \rightarrow \infty$ and $k_{n} \rightarrow k_{0}$ for some $k_{0} \in[0,1]$.

For every $a \in[0,1]$, put $a_{n}=k_{n}-k_{0}+a \quad(n=$ $1,2,3, \cdots)$, then

$$
\begin{aligned}
M\left(k_{n}\right) & =M\left(k_{0}-a+a_{n}\right) \\
& \leq M\left(k_{0}-a\right)+M\left(a_{n}\right) \\
& =M\left(\left|k_{0}-a\right|\right)+M\left(a_{n}\right) .
\end{aligned}
$$

Since $\left|k_{0}-a\right| \in[0,1]$ by (ii), $M\left(\left|k_{0}-a\right|\right)<\infty$. Thus $M\left(a_{n}\right) \rightarrow \infty$ and $a_{n} \rightarrow a$ as $n \rightarrow \infty$. Consequently, for every $n \in \mathbf{N}$, put

$$
L_{n}=\{x \in[0,1]: M(x) \leq n\},
$$

then it is easily verified that each L_{n} is nowhere dense and

$$
\bigcup_{n=1}^{\infty} L_{n}=[0,1]
$$

which contradicts the Baire category theorem. Thus, (ii) \Rightarrow (iii) holds.

The following theorem have already been proved by [2], but we give an alternative proof in this paper.

Theorem 2.2. Let $f \in L^{p}(\mathbf{R}), \quad 1 \leq p<\infty$. If there exists a countable partition $\left(a_{i}\right)_{-\infty}^{\infty}$ on \mathbf{R} satisfying the following conditions:
(1) $a_{i}<a_{i+1}$ and $\lim _{i \rightarrow \pm \infty} a_{i}= \pm \infty$;
(2) $\inf _{i}\left(a_{i+1}-a_{i}\right)>0$;
(3) f is monotone on $\left(a_{i}, a_{i+1}\right)$.

Then $\Lambda_{p}(f)$ is linear.
Proof. In what follows, let

$$
\varepsilon=\left(\inf _{i \in \mathbf{Z}}\left|a_{i+1}-a_{i}\right|\right) / 3>0
$$

Then, for every $0<b<a<\varepsilon, x \in \mathbf{R}$, we have

$$
\begin{align*}
& |f(x-b)-f(x)|^{p} \tag{2.5}\\
& \leq 2^{p-1}\left(|f(x-b)-f(x-a-b)|^{p}\right. \\
& +|f(x-a)-f(x)|^{p} \\
& +|f(x-b)-f(x+a-b)|^{p} \\
& \left.+|f(x+a)-f(x)|^{p}\right) .
\end{align*}
$$

To show this, put
$I_{1}=[x-a-b, x-b], I_{2}=[x, x+a], I_{3}=[x-a-b, x+a]$.
Then it is obvious that $I_{1}, I_{2} \subset I_{3}$ and $I_{1} \cap I_{2}=\emptyset$. Moreover, since the length of the interval I_{3} is $2 a+$ b and less than $3 \varepsilon\left(\leq \inf _{i \in \mathbf{Z}}\left|a_{i+1}-a_{i}\right|\right)$, the number of elements of $\left\{i: a_{i} \in I_{3}\right\}$ is at most single. Hence either of the following holds
(a) $\left\{i: a_{i} \in I_{1}\right\}=\emptyset$;
(b) $\left\{i: a_{i} \in I_{2}\right\}=\emptyset$.

CASE (a): By hypothesis, sinse f is monotone on $I_{1}=[x-a-b, x-b]$, we see that $f(x-a-b) \leq$ $f(x-a) \leq f(x-b) \quad$ or $\quad f(x-a-b) \geq f(x-a) \geq$ $f(x-b)$, and so

$$
\begin{aligned}
& |f(x-b)-f(x)| \\
& \quad \leq|f(x-b)-f(x-a)|+|f(x-a)-f(x)| \\
& \quad \leq|f(x-b)-f(x-a-b)|+|f(x-a)-f(x)|
\end{aligned}
$$

Hence

$$
\begin{aligned}
& |f(x-b)-f(x)|^{p} \\
& \quad \leq 2^{p-1}\left(|f(x-b)-f(x-a-b)|^{p}+\right. \\
& \left.|f(x-a)-f(x)|^{p}\right) .
\end{aligned}
$$

CASE (b): By hypothesis, since f is monotone on $I_{2}=[x, x+a]$, we have that either $f(x) \leq f(x+$ $a-b) \leq f(x+a)$ or $f(x) \geq f(x+a-b) \geq f(x+a)$ holds, and so

$$
\begin{aligned}
& |f(x-b)-f(x)| \\
& \quad \leq|f(x-b)-f(x+a-b)|+|f(x+a-b)-f(x)| \\
& \quad \leq|f(x-b)-f(x+a-b)|+|f(x+a)-f(x)|
\end{aligned}
$$

Consequently, we have

$$
\begin{aligned}
& |f(x-b)-f(x)|^{p} \\
& \quad \leq 2^{p-1}\left(|f(x-b)-f(x+a-b)|^{p}+\right. \\
& \left.|f(x+a)-f(x)|^{p}\right) .
\end{aligned}
$$

Thus we see that (2.5) holds. Finally, to show that the statement (iii) of Theorem 2.1 holds, let $0<k<1, a>0$, and so $0<k a<a$.

Now we consider the two case of $a<\varepsilon$ or $a \geq \varepsilon$.

First, suppose that $a<\varepsilon$. Put $b=k a$ in (2.5), then by $0<k a<a<\varepsilon$ we see

$$
\begin{aligned}
& |f(x-k a)-f(x)|^{p} \\
& \qquad \leq 2^{p-1}\left(|f(x-k a)-f(x-a-k a)|^{p}\right. \\
& \quad+|f(x-a)-f(x)|^{p} \\
& \quad+|f(x-k a)-f(x+a-k a)|^{p} \\
& \left.\quad+|f(x+a)-f(x)|^{p}\right),
\end{aligned}
$$

and so

$$
\begin{aligned}
\| f(\cdot & -k a)-f(\cdot) \|_{p}^{p} \\
\leq & 2^{p-1}\left(\|f(\cdot-k a)-f(\cdot-a-k a)\|_{p}^{p}\right. \\
\quad & +\|f(\cdot-a)-f(\cdot)\|_{p}^{p} \\
\quad & +\|f(\cdot-k a)-f(\cdot+a-k a)\|_{p}^{p} \\
\quad & \left.+\|f(\cdot+a)-f(\cdot)\|_{p}^{p}\right) \\
= & 2^{p+1}\|f(\cdot-a)-f(\cdot)\|_{p}^{p} .
\end{aligned}
$$

Next suppose that $a \geq \varepsilon$, put

$$
c=\inf _{\alpha \geq \varepsilon}\|f(\cdot-\alpha)-f(\cdot)\|_{p}
$$

then $c>0$ holds. In deed, a function $\| f(\cdot-\alpha)-$ $f(\cdot) \|_{p}$ is positive and continuous with respect to $\alpha>0$ and

$$
\lim _{\alpha \rightarrow \infty}\|f(\cdot-\alpha)-f(\cdot)\|_{p}=2\|f\|_{p}>0
$$

Thus we see that $c>0$.
We now observe that

$$
\frac{\|f(\cdot-k a)-f(\cdot)\|_{p}}{\|f(\cdot-a)-f(\cdot)\|_{p}} \leq \frac{\|f(\cdot-k a)\|_{p}+\|f\|_{p}}{c}=\frac{2\|f\|_{p}}{c} .
$$

Then we have

$$
\|f(\cdot-k a)-f(\cdot)\|_{p}^{p} \leq\left(\frac{2\|f\|_{p}}{c}\right)^{p}\|f(\cdot-a)-f(\cdot)\|_{p}^{p}
$$

Put $C=\max \left\{2^{p+1},\left(\frac{2\|f\|_{p}}{c}\right)^{p}\right\}>0$, we conclude that

$$
\begin{aligned}
& \|f(\cdot-k a)-f(\cdot)\|_{p}^{p} \\
& \quad \leq C\|f(\cdot-a)-f(\cdot)\|_{p}^{p} \quad \text { for } 0 \leq k \leq 1, a>0
\end{aligned}
$$

Thus we see that Theorem 2.1(iii) holds, and that $\Lambda_{p}(f)$ is a linear subspace in \mathbf{R}^{∞}.

Here, we give examples without the proof such that each $\Lambda_{p}(f)$ is not a linear space.

Example 3. $f_{0} \in C_{0}(\mathbf{R})(\neq 0), \quad \operatorname{supp} f_{0} \subset$ $[0, \pi]$. For m and $n \in \mathbf{N}$, we define $f_{m, n} \in C(\mathbf{R})$ by

$$
f_{m, n}(x)=1+\frac{1}{m} \sin (n x) .
$$

Then there exist subsequences $\left\{m_{i}\right\}$ and $\left\{n_{i}\right\}$ satisfying the following conditions (i) and (ii):
(i) $f(x)=\lim _{j \rightarrow \infty} f_{0}(x) \prod_{i=1}^{j} f_{m_{i}, n_{i}}(x)$ (uniformly on \mathbf{R}).
(ii) $\lim _{i \rightarrow \infty} \frac{\int_{-\infty}^{\infty}\left|f\left(x-\frac{\pi}{n_{i}}\right)-f(x)\right|^{p} d x}{\int_{-\infty}^{\infty}\left|f\left(x-\frac{2 \pi}{n_{i}}\right)-f(x)\right|^{p} d x}=\infty$.

We can show that (i) implies $f \in C_{0}(\mathbf{R}) \subset$ $L_{p}(\mathbf{R})$ and (ii) implies that f does not satisfy Theorem 2.1(ii). Thus we see that $\Lambda_{p}(f)$ is not a linear subspace in \mathbf{R}^{∞}.

Next we give an example of a more smooth function f such that $\Lambda_{p}(f)$ is not linear.

Example 4. Let $1 \leq p<\infty$. Then there exists an function $f \in L_{p}(\mathbf{R})$ such that:
(i) $f \in C^{\infty}(\mathbf{R}) \cap L_{p}(\mathbf{R})$ and $f(x)>0(x \in \mathbf{R})$;
(ii) the number of x satisfying $f^{\prime}(x)=0$ on every subinterval I of \mathbf{R} is at most countable;
(iii) $\Lambda_{p}(f)$ is not a linear subspace of \mathbf{R}^{∞}.

In fact, we can construct f as follows: Let

$$
\rho(x)= \begin{cases}e^{-\frac{1}{1-x^{2}}} & (-1<x<1) \\ 0 & |x| \geq 1\end{cases}
$$

Then $\rho \in C_{0}^{\infty}(\mathbf{R})$ and $\operatorname{supp} \rho=[-1.1]$. Moreover, for all $n \in \mathbf{N}$, let $\rho_{n}(x)=\rho(6(x-n+1 / 2))$, then we have $\operatorname{supp} \rho_{n}=[n-2 / 3, n-1 / 3]$ and $0 \leq \rho_{n}(x) \leq$ $1 / e$. For every subsequence $\left(n_{k}\right)_{k=1}^{\infty}$ of the natural number, let
$f(x)= \begin{cases}e^{-x^{2}} & (x<0) \\ e^{-x^{2}}\left(1+\rho_{k}(x) \sin n_{k} \pi x\right) & (k-1 \leq x<k) .\end{cases}$
Then, the above conditions (i) and (ii) hold. On the other hand, choose a sequence $\left(n_{k}\right)$ so that n_{k} is a multiple of n_{k-1} for each $k \in \mathbf{N}$ and

$$
\lim _{k \rightarrow \infty} e^{k^{2}} \frac{n_{k}}{n_{k-1}}=\infty
$$

holds (for example, $n_{k}=(k!)!$). Then we have

$$
\lim _{k \rightarrow \infty} \frac{\left\|f\left(\cdot-1 / n_{k}\right)-f(\cdot)\right\|_{p}}{\left\|f\left(\cdot-2 / n_{k}\right)-f(\cdot)\right\|_{p}}=\infty
$$

Let $a / 2=1 / n_{k}$, then we can not take a constant C such that

$$
\|f(\cdot-a / 2)-f(\cdot)\|_{p}^{p} \leq C\|f(\cdot-a)-f(\cdot)\|_{p}^{p}
$$

for all $a>0$. Hence, we see from Theorem 2.1 that $\Lambda_{p}(f)$ is not a linear subspace of \mathbf{R}^{∞}.

Remark. We should note that example 2 means that condition (2) of Theorem 2.2 is essential.
3. $\boldsymbol{\ell}_{\mathbf{1}}=\boldsymbol{\Lambda}_{\mathbf{1}}(\boldsymbol{f})$. Let $f \in L_{1}(\mathbf{R})$. We define a subset D_{f} of \mathbf{R} by

$$
D_{f}=\left\{x \in \mathbf{R}: \lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h}|f(t)-f(x)| d t=0\right\}
$$

It is well known that the Lebesgue measure of $\mathbf{R} \backslash D_{f}$ is zero.

Let $f: \mathbf{R} \rightarrow \mathbf{R}$. The essential variation ess $V(f)$ is defined as

$$
\begin{aligned}
& \operatorname{ess} V(f)= \\
& \sup \left\{\sum_{i=1}^{k}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right| ; x_{0}<\cdots<x_{k}, x_{i} \in D_{f}\right\} .
\end{aligned}
$$

Theorem 3.1. Let $f \in L_{1}(\mathbf{R})$. Then we have

$$
\lim _{h \rightarrow 0} \int_{\mathbf{R}}\left|\frac{f(x-h)-f(x)}{h}\right| d x=\operatorname{ess} V(f)
$$

Proof. Let $\left(x_{k}\right)_{k=1}^{n}$ be a finite sequence of elements of D_{f} such that $a_{1}<a_{2}<\cdots<a_{n}$. Then for $h \neq 0$,

$$
\begin{aligned}
& \int_{\mathbf{R}}\left|\frac{f(x-h)-f(x)}{h}\right| d x \\
& \quad \geq \frac{1}{|h|} \sum_{k=1}^{n-1}\left|\int_{a_{k}}^{a_{k+1}} f(x-h)-f(x) d x\right| \\
& \quad=\sum_{k=1}^{n-1}\left|\frac{1}{h} \int_{a_{k}-h}^{a_{k}} f(x) d x-\frac{1}{h} \int_{a_{k+1}-h}^{a_{k+1}} f(x) d x\right|
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \liminf _{h \rightarrow 0} \int_{\mathbf{R}}\left|\frac{f(x-h)-f(x)}{h}\right| d x \\
& \quad \geq \sum_{k=1}^{n-1}\left|f\left(a_{k}\right)-f\left(a_{k+1}\right)\right|
\end{aligned}
$$

Since $\left(x_{k}\right)$ is arbitrary, we have

$$
\liminf _{h \rightarrow 0} \int_{\mathbf{R}}\left|\frac{f(x-h)-f(x)}{h}\right| d x \geq \operatorname{ess} V(f)
$$

To show the converse inequality, It suffices to show that the statement holds for $h>0$.

$$
\begin{aligned}
\int_{\mathbf{R}} & \left|\frac{f(x-h)-f(x)}{h}\right| d x \\
& =\frac{1}{h} \sum_{k=-\infty}^{\infty} \int_{0}^{h}|f(x+(k+1) h)-f(x+k h)| d x \\
& =\frac{1}{h} \int_{0}^{h} \sum_{k=-\infty}^{\infty}|f(x+(k+1) h)-f(x+k h)| d x .
\end{aligned}
$$

We should note that the Lebesgue measure of

$$
\bigcup_{k=-\infty}^{\infty}\left\{\left(\mathbf{R} \backslash D_{f}\right)-k h\right\}
$$

is zero. Let $x \notin \bigcup_{k=-\infty}^{\infty}\left\{\left(\mathbf{R} \backslash D_{f}\right)-k h\right\}$, then we have $x+k h \in D_{f}$ for every $k \in \mathbf{Z}$.

$$
\sum_{k=-\infty}^{\infty}|f(x+(k+1) h)-f(x+k h)| \leq \operatorname{ess} V(f)
$$

Thus we have

$$
\int_{\mathbf{R}}\left|\frac{f(x-h)-f(x)}{h}\right| d x \leq \operatorname{ess} V(f), h>0
$$

Corollary 3.2. $f=g$ a.e. implies $\operatorname{ess} V(f)=$ ess $V(g)$.

Lemma 3.3. Let $f \in L_{1}(\mathbf{R})$ and $\operatorname{ess} V(f)<$ ∞. Then
(1) For every $x \in \mathbf{R}, \lim _{\substack{h \downarrow 0 \\ x+h \in D_{f}}} f(x+h)$ converges.
(2) By (1), we can define

$$
g(x)=\lim _{\substack{h \backslash 0 \\ x+h \in D_{f}}} f(x+h) \text { for } x \in \mathbf{R}
$$

Then $g(x)$ is right continuous on \mathbf{R} and $g(x)=f(x)$ for $x \in D_{f}$.
(3) Let g be the function defined on \mathbf{R} in (2). Then $V(g)=\operatorname{ess} V(f)$, where $V(g)$ is a total variation on \mathbf{R} of g.

Proof. (1) Let $x \in \mathbf{R}$. From the density of D_{f} in \mathbf{R}, we can take a sequence such that $t_{1}>$ $t_{2}>\cdots \downarrow x$ and $t_{n} \in D_{f}$. Then,

$$
\sum_{n=1}^{\infty}\left|f\left(t_{n+1}\right)-f\left(t_{n}\right)\right| \leq \operatorname{ess} V(f)<+\infty
$$

Hence $\lim _{n \rightarrow \infty} f\left(t_{n}\right)$ converges. Since the choice of $\left\{t_{n}\right\}$ is arbitrary, $\lim _{h \downarrow 0, x+h \in D_{f}} f(x+h)$ converges.
(2) It is clear from (1) that g is right continuous. Let $x \in D_{f}$,
$f(x)=\lim _{h \downarrow 0} \frac{1}{h} \int_{0}^{h} f(x+t) d t=\lim _{\substack{h \downarrow 0 \\ x+h \in D_{f}}} f(x+h)=g(x)$.
(3) We see from (2) and $\left.g\right|_{D_{f}}=f$ that ess $V(f) \leq$ $V(g)$. To show the converse inequality, take any sequence of \mathbf{R} with $a_{1}<a_{2}<\cdots<a_{n}$. Since g is right continuous and D_{f} is dense in \mathbf{R}, for every $\varepsilon>0$, there exists $\left(b_{k}\right)$ such that $b_{k} \in\left[a_{k}, a_{k+1}\right) \cap D_{f}$ $(1 \leq k \leq n)$ and $\left|g\left(a_{k}\right)-g\left(b_{k}\right)\right|<\varepsilon / 2(n-1)$. Then

$$
\begin{aligned}
& \sum_{k=1}^{n-1}\left|g\left(a_{k+1}\right)-g\left(a_{k}\right)\right| \\
& \quad \leq \sum_{k=1}^{n-1}\left\{\left|g\left(a_{k+1}\right)-g\left(b_{k+1}\right)\right|\right. \\
& \left.\quad+\left|g\left(b_{k+1}\right)-g\left(b_{k}\right)\right|+\left|g\left(b_{k}\right)-g\left(a_{k}\right)\right|\right\} \\
& \quad \leq \sum_{k=1}^{n-1}\left|g\left(b_{k+1}\right)-g\left(b_{k}\right)\right|+\varepsilon \\
& \quad \leq \operatorname{ess} V(f)+\varepsilon .
\end{aligned}
$$

Thus we have $V(g) \leq \operatorname{ess} V(f)$.
Theorem 3.4. For every $f \in L_{1}(\mathbf{R})$, the following statements are equivalent:
(i) ess $V(f)<\infty$.
(ii) $\left\{\|f(\cdot+h)-f(\cdot)\|_{1} /|h|: h \neq 0, h \in \mathbf{R}\right\}$ is bounded.
(iii) $f \in B V(\mathbf{R})$.

Moreover, $|D f|(\mathbf{R})=\operatorname{ess} V(f)$.

Proof. The equivalence of statements (i) and (ii) is clear from Theorem 3.1. The equivalence of statements (i) and (iii) follows from [3, Theorem 7.8].

Theorem 3.5. For every $f \in L_{1}(\mathbf{R}), f \in$ $B V(\mathbf{R})$ if and only if $\Lambda_{1}(f)=\ell_{1}$.

Proof. Let $f \in B V(\mathbf{R})$. We see from the previous theorem that $\ell_{1} \subseteq \Lambda_{1}(f)$.

The converse inclusion $\ell_{1} \supseteq \Lambda_{1}(f)$ follows from (i) $([1$, Theorem 1]) appeared in the introduction. Thus $\ell_{1}=\Lambda_{1}(f)$.

To show the converse, suppose that $f \notin$ $B V(\mathbf{R})$. Then we see from Theorem 3.4 that

$$
\left\{\|f(\cdot+h)-f(\cdot)\|_{1} /|h|: h \neq 0, h \in \mathbf{R}\right\}
$$

is unbounded. Hence, for each $n \in \mathbf{N}$ there exists $h_{n} \neq 0$ such that

$$
\int_{\mathbf{R}}\left|\frac{f\left(x-h_{n}\right)-f(x)}{h_{n}}\right| d x>2^{n}
$$

Hence

$$
\left|h_{n}\right|<\frac{1}{2^{n}} \int_{\mathbf{R}}\left|f\left(x-h_{n}\right)-f(x)\right| d x \leq 2^{1-n}\|f\|_{1}
$$

Now, let $N(n)$ be the maximum of natural numbers satisfying $N\left|h_{n}\right| \leq 2^{1-n}\|f\|_{1}$. We have from the maximality of $N(n)$ that

$$
2^{1-n}\|f\|_{1}<(N(n)+1)\left|h_{n}\right|<2 N(n)\left|h_{n}\right|
$$

and so

$$
\|f\|_{1}<N(n) 2^{n}\left|h_{n}\right|<N(n) \int_{\mathbf{R}}\left|f\left(x-h_{n}\right)-f(x)\right| d x
$$

Using $\left(h_{n}\right)$ and $(N(n))$, we can construct a sequence $\left(a_{n}\right)$ as follows:

$$
a_{j}=h_{k}, 1+\sum_{i=0}^{k-1} N(i) \leq j \leq \sum_{i=0}^{k} N(i)
$$

where $N(0)=0$ and $j, k=1,2,3, \cdots$.
Consequently, we have

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty} N(n)\left|h_{n}\right| \leq \sum_{n=1}^{\infty} 2^{1-n}\|f\|_{1}<+\infty
$$

and so $\boldsymbol{a} \in \ell_{1}$.
On the other hand,

$$
\begin{aligned}
\Psi_{1}(\boldsymbol{a} ; f) & =\sum_{n=1}^{\infty} N(n) \int_{\mathbf{R}}\left|f\left(x-h_{n}\right)-f(x)\right| d x \\
& \geq \sum_{n=1}^{\infty}\|f\|_{1}=\infty
\end{aligned}
$$

Hence $\boldsymbol{a} \notin \Lambda_{1}(f)$, which contradicts $\ell_{1}=\Lambda_{1}(f)$.

References

[1] A. Honda, Y. Okazaki and H. Sato, An L_{p}-function determines l_{p}, Proc. Japan Acad. Ser. A Math. Sci. 84 (2008), no. 3, 39-41.
[2] A. Honda, Y. Okazaki and H. Sato, A new sequence space defined by an L_{2}-function, in Banach and Function Spaces III (held at Kyushu Institute of Technology (KIT), Tobata Campus, Kitakyushu, JAPAN on September 14-17, 2009), Proceedings of the Third International Symposium on Banach and Function Spaces 2009, Yokohama Publishers, Yokohama. (to appear).
[3] G. Leoni, A first course in Sobolev spaces, Graduate Studies in Mathematics, 105, Amer. Math. Soc., Providence, RI, 2009.
[4] L. A. Shepp, Distingunishing a sequence of random variables from a translate of itself, Ann. Math. Statist. 36 (1965), 1107-1112.

[^0]: 2010 Mathematics Subject Classification. Primary 46A45, 46E35; Secondary 65B20.
 *) Matsue College of Technology, 14-4 Nishi-ikuma, Matsue, Shimane 690-8518, Japan.
 **) Hiroshima Jogakuin University, 4-13-1 Ushita Higashi Higashi-ku, Hiroshima 732-0063, Japan.

