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Abstract: In this paper, we mainly investigate the growth and the value distribution of

meromorphic solutions of the linear difference equation

anðzÞfðzþ nÞ þ � � � þ a1ðzÞfðzþ 1Þ þ a0ðzÞfðzÞ ¼ bðzÞ;

where a0ðzÞ; a1ðzÞ; � � � ; anðzÞ; bðzÞ are entire functions such that a0ðzÞanðzÞ 6� 0. For a finite order

meromorphic solution fðzÞ, some interesting results on the relation between � ¼ �ðfÞ and

�f ¼ maxf�ðfÞ; �ð1=fÞg, are proved. And examples are provided for our results.
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1. Introduction. In this paper, a meromor-

phic function means meromorphic in the complex

plane. We will use the basic notions in Nevanlinna

theory of meromorphic functions (see e.g., [8,10,17]).

Recently, there has been an increasing re-

newed interest in complex difference equations

and difference analogues of Nevanlinna theory (see

e.g., [1,3–7,9,11,12]). We firstly recall some exis-

tence results for meromorphic solutions of differ-

ence equations. The following two results have been

proved by Shimomura [14] and Yanagihara [16],

respectively.

Theorem A. For any nonconstant polyno-

mial P ðyÞ, the difference equation

yðzþ 1Þ ¼ P ðyðzÞÞ

has a nontrivial entire solution.

Theorem B. For any nonconstant rational

function RðyÞ, the difference equation

yðzþ 1Þ ¼ RðyðzÞÞ

has a nontrivial meromorphic solution in the com-

plex plane.

The following two results concerning both

existence and growth restriction for meromorphic

solutions of linear difference equations have

been proved by Bank and Kaufman [2] and

Whittaker [15], respectively.

Theorem C. For any nonconstant rational

function RðzÞ, the difference equation

yðzþ 1Þ � yðzÞ ¼ RðzÞ
has a nontrivial meromorphic solution yðzÞ such that

T ðr; yÞ ¼ OðrÞ.
Theorem D. Let � be a real number, and let

�ðzÞ be a given entire function with order �ð�Þ ¼ �.

Then the equation

F ðzþ 1Þ ¼ �ðzÞF ðzÞ

admits a meromorphic solution of order �ðF Þ �
�þ 1.

In a recent paper [4], Chiang and Feng have

improved Theorem D by showing that �ðF Þ � �þ 1

can be replaced by �ðF Þ ¼ �þ 1 (see [4], Corollary

9.3). In fact, they have investigated meromorphic

solutions of the linear difference equation

Xn

j¼0

ajðzÞfðzþ jÞ ¼ 0;ð1:1Þ

where a0ðzÞ; a1ðzÞ; � � � ; anðzÞ are entire functions

such that a0ðzÞanðzÞ 6� 0, and proved the following

two results in [4].

Theorem E. Let a0ðzÞ; a1ðzÞ; � � � ; anðzÞ be

polynomials such that there exists an integer l,

0 � l � n such that

degðalÞ > max
0�j�n; j 6¼l

fdegðajÞg:

If fðzÞ is a meromorphic solution of (1.1), then

�ðfÞ � 1.

Theorem F. Let a0ðzÞ; a1ðzÞ; � � � ; anðzÞ be

entire functions such that there exists an integer l,

0 � l � n such that

�ðalÞ > max
0�j�n; j 6¼l

f�ðajÞg:
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If fðzÞ is a meromorphic solution of (1.1), then

�ðfÞ � �ðalÞ þ 1.

Theorem E can be also found in [5]. Our aim

in this paper is to present some generalizations of

Theorem E and Theorem F.

2. Main results. In what follows, we will

use the notation �f :¼ maxf�ðfÞ; �ð1=fÞg, where

�ðfÞ and �ð1=fÞ are, respectively, the exponent of

convergence of the zeros and poles of fðzÞ. Consid-

ering the growth and the value distribution of

meromorphic solution fðzÞ, we improve Theorem E

by the following result, in which an interesting

relationship between � ¼ �ðfÞ and �f is given.

Theorem 2.1. Let a0ðzÞ; a1ðzÞ; � � � ; anðzÞ,
bðzÞ be polynomials such that

a0ðzÞanðzÞ 6� 0; degð
X

deg aj¼d
ajÞ ¼ d;

where d ¼ max
0�j�n

fdeg ajg. If fðzÞ is a transcendental

meromorphic solution of

Xn

j¼0

ajðzÞfðzþ jÞ ¼ bðzÞ;ð2:1Þ

then �ðfÞ � 1. Moreover, if fðzÞ is of finite order,

then 1 � �ðfÞ � 1þ �f .

Remark. Obviously, (2.1) might admit some

rational solutions. And by the proof of Theorem 2.1,

we see that if fðzÞ has infinitely many poles, then

�ð1=fÞ � 1.
As shown in Ozawa [13], for any given � 2

½1;1Þ, we can choose a periodic entire function gðzÞ
with period 1 such that �ðgÞ ¼ �, in particular, if

� 62 N, then �ðgÞ ¼ �ðgÞ ¼ �. This enables us to

give some examples for Theorem 2.1 to show the

sharpness of estimates for the order of growth of

solutions. And we also show that bðzÞ 6� 0 and

�ð1=fÞ � 1 may happen. However, we have not

found any example such that 1 < �ðfÞ ¼ 1þ �f .
Examples. (1) fðzÞ ¼ ez þ 1 is of order

�ðfÞ ¼ �ðfÞ ¼ 1 and solves the equation

z2fðzþ 2Þ � ðez2 þ 1Þfðzþ 1Þ � efðzÞ
¼ z2 � ðez2 þ 1Þ � e;

while the gamma function �ðzÞ is of order �ð�Þ ¼
�ð1=�Þ ¼ 1 and solves the equation

�ðzþ 1Þ � z�ðzÞ ¼ 0:

(2) f1ðzÞ ¼ ez and f2ðzÞ ¼ gðzÞez, where gðzÞ is

a periodic function with period 1 such that �ðgÞ ¼
�ðgÞ ¼ � 2 ð1; 2Þ, are solutions of the equation

z2fðzþ 2Þ � ðez2 þ 1Þfðzþ 1Þ
� efðzÞ ¼ 0;

and �ðf1Þ ¼ �f1
þ 1 and 1 < � ¼ �ðf2Þ < �f2

þ 1.

For the case that some coefficients are tran-

scendental entire functions, as a continuation of

Theorem F, we prove the following

Theorem 2.2. Let a0ðzÞ; a1ðzÞ; � � � ; anðzÞ be

entire functions, such that

a0ðzÞanðzÞ 6� 0; max
1�j�n

f�ðajÞg ¼ � < 1:

Let fðzÞ be a nontrivial meromorphic solution of

Xn

j¼1

ajðzÞfðzþ jÞ þ a0ðzÞezfðzÞ ¼ 0:ð2:2Þ

Then �ðfÞ � 2. Moreover, if fðzÞ is of finite order,

then either 2 � �ðfÞ � 1þ �f or 1þ �f < �ðfÞ ¼ 2.

Next, we give some examples for Theorem 2.2.

Unfortunately, we still wonder whether there exit

some examples for Theorem 2.2 such that fðzÞ
satisfying 2 < �ðfÞ ¼ �f þ 1.

Examples. (1) f1ðzÞ ¼ eðz
2�1Þ=2 is of order

�ðf1Þ ¼ 2 > �f1
þ 1 and f2ðzÞ ¼ eðz

2�1Þ=2 sinð2�zÞ is

of order �ðf2Þ ¼ 2 ¼ �f2
þ 1 and they solve the

equation

fðzþ 1Þ þ ezfðzÞ ¼ 0:ð2:3Þ

(2) Choose a periodic function gðzÞ with

period 1 such that �ðgÞ ¼ �ðgÞ 2 ð2; 3Þ. Then both

f1ðzÞ ¼ gðzÞeðz
2�1Þ=2 and f2ðzÞ ¼ eðz

2�1Þ=2=gðzÞ solve

(2.3) such that 2 < �ðf1Þ ¼ �ðgÞ < �ðgÞ þ 1 ¼
�ðf1Þ þ 1, and 2 < �ðf2Þ ¼ �ðgÞ < �ðgÞ þ 1 ¼ �ð1=
f2Þ þ 1:

As an application of Theorem 2.2, we prove the

following Theorem 2.3.

Theorem 2.3. Under the assumption of

Theorem 2.2, if bðzÞ 6� 0 is a meromorphic function,

then the equation

Xn

j¼1

ajðzÞfðzþ jÞ þ a0ðzÞezfðzÞ ¼ bðzÞð2:4Þ

admits at most one meromorphic solution fðzÞ such

that �ðfÞ < 2.
Remark. In fact, if (2.4) admits two mero-

morphic solutions fðzÞ, gðzÞ such that maxf�ðfÞ;
�ðgÞg < 2, then hðzÞ ¼ fðzÞ � gðzÞ is a meromorphic

solutions of (2.2) with order �ðhÞ � maxf�ðfÞ;
�ðgÞg < 2. However, by Theorem 2.2 or Theorem

F, we have �ðhÞ � 2, a contradiction. Thus we prove

Theorem 2.3.
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In Theorem 2.3, if �ðbÞ 2 ½1; 2Þ, one can easily

give some examples for existence of such meromor-

phic solution fðzÞ that �ðfÞ < 2. However, it seems

quite different for the case �ðbÞ < 1. And we should

ask a question: Is it true that all meromorphic

solutions of (2.4) are of order � 2 provided that

�ðbÞ < 1?

3. Proofs of results. The Lemma 3.1 below

is the Corollary 8.3 in [4].

Lemma 3.1. Let �1; �2 be two arbitrary com-

plex numbers, and let fðzÞ be a meromorphic func-

tion of finite order �. Let " > 0 be given, then there

exists a subset E � ð0;1Þ with finite logarithmic

measure such that for all jzj ¼ r 62 E [ ½0; 1	, we have

expf�r��1þ"g �
fðzþ �1Þ
fðzþ �2Þ

����

���� � expfr��1þ"g:

Remark. In Lemma 3.1, if � < 1, let " ¼
1��

2 > 0, then we can see that

fðzþ �1Þ
fðzþ �2Þ

! 1

as jzj ¼ r 62 E [ ½0; 1	; r!1.

The following Lemma is a corollary of the

Borel’s Theorem on the combination of entire

functions (see [17], the corollary of Theorem 1.52).

Lemma 3.2. If fjðzÞ ðj ¼ 1; 2; . . . ; nþ 1Þ and
gjðzÞ ðj ¼ 1; 2; . . . ; nÞ ðn � 1Þ are entire functions
satisfying

(i)
Pn

j¼1

fjðzÞegjðzÞ ¼ fnþ1ðzÞ;

(ii) the order of fj is less than egk for 1 � j �
nþ 1, 1 � k � n; And furthermore, the order of fj
is less than egk�gh for n � 2 and 1 � j � nþ 1, 1 �
h < k � n,

Then fjðzÞ � 0 ðj ¼ 1; 2; . . . ; nþ 1Þ.
Proof of Theorem 2.1.

Step 1: We prove that �ðfÞ � 1. Otherwise, we

have �ðfÞ ¼ � < 1. Then we should first show that

fðzÞ has finitely many poles. Assume that fðzÞ has

infinitely many poles. Since a0ðzÞ; � � � ; anðzÞ are all

polynomials, we can choose a point z0 such that

fðz0Þ ¼ 1 and for each t 2 N, �n
j¼0ajðz0 þ tÞ 6¼ 0.

This and (2.1) implies that there is at least

one point j 2 f1; � � � ; ng such that fðz0 þ jÞ ¼ 1.

Denote l0 ¼ maxfj : fðz0 þ jÞ ¼ 1; 1 � j � ng and

z1 ¼ z0 þ l0. Then from

Xn

j¼0

ajðz1Þfðz1 þ jÞ ¼ bðz1Þ;

we see that there is at least one point j 2 f1; � � � ; ng
such that fðz1 þ jÞ ¼ 1. By induction, there is an

infinite sequence fz0 þ ltg1t¼1 such that t � lt � nt,
and fðz0 þ ltÞ ¼ 1. This yields that

Nðjz0j þ nt; fÞ �
t

2
log t;

and thus we get �ð1=fÞ � 1. This contradicts

�ð1=fÞ � �ðfÞ < 1. Therefore, without loss of gen-

erality, we can assume that fðzÞ has no poles in

what follows.

By Lemma 3.1 and its remark, for each j 2
f1; 2; � � � ; ng, there exists a set E � ð1;1Þ of finite

logarithmic measure, so that

fðzþ jÞ
fðzÞ

! 1;ð3:1Þ

for all z satisfying jzj ¼ r 62 E, as r!1.

Set I ¼ f0; 1; � � � ; ng;� ¼ fj 2 I : deg aj ¼ dg.
Fix a point l 2 �, and we rewrite (2.1) as follows:

X

j2�

ajðzÞ
alðzÞ

fðzþ jÞ
fðzÞ

ð3:2Þ

þ
X

j2In�

ajðzÞ
alðzÞ

fðzþ jÞ
fðzÞ ¼

bðzÞ
alðzÞfðzÞ

:

Now choose an infinite sequence zk ¼ rkei�k ,
�k 2 ½0; 2�Þ; jzkj ¼ rk 62 E such that jfðzkÞj ¼
Mðrk; fÞ, rk !1 as k!1. Noticing now fðzÞ is

a transcendental entire function, with (3.1) and

(3.2), we get

d�

dl
ð1þ oð1ÞÞ þ oð1Þ ¼ oð1Þ;

where dl and d� is, respectively, the leading

coefficient of alðzÞ and
P
j2�

ajðzÞ. That implies

d� ¼ 0, which contradicts our assumption. Thus

we have �ðfÞ � 1.

Step 2: We show that � � �f þ 1 if fðzÞ is of finite

order. Otherwise, we have �f þ 1 < �ðfÞ ¼ � <1.

Assume that z ¼ 0 is a zero (or pole) of fðzÞ of order

K. Applying Hadamard factorization Theorem of

meromorphic function (see [17], Theorem 2.7), we

write fðzÞ as follows:

fðzÞ ¼ zK
P1ðzÞ
P2ðzÞ

eQðzÞ;

where P1ðzÞ; P2ðzÞ are entire functions such that

�ðP1Þ ¼ �ðP1Þ ¼ �ðfÞ, �ðP2Þ ¼ �ðP2Þ ¼ �ð1=fÞ, and

QðzÞ is a polynomial such that degQðzÞ ¼ q. Since

�ðfÞ > �f þ 1, we see that q ¼ �ðfÞ > �f þ 1.
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Denote

AjðzÞ ¼
ajðzÞP1ðzþ jÞ�n

k¼0P2ðzþ kÞ
P2ðzþ jÞ

;

Anþ1ðzÞ ¼ bðzÞ�n
k¼0P2ðzþ kÞ:

Then Aj ( j ¼ 0; 1; . . . ; nþ 1) are all entire functions

such that �ðAjÞ < q � 1. We obtain from (2.1) that

X

j¼0

AjðzÞeQðzþjÞ ¼ Anþ1ðzÞ:ð3:3Þ

Notice that degðQðzþ hÞ �Qðzþ kÞÞ ¼ q � 1. Thus

Lemma 3.2 is valid for (3.3) and hence AjðzÞ � 0

for j ¼ 0; 1; . . . ; n. However, a0an 6� 0 yields that

A0An 6� 0, a contradiction.

Proof of Theorem 2.2.

We get �ðfÞ ¼ � � �ðezÞ þ 1 ¼ 2 by Theorem F

immediately. Now if 2 � � � �f þ 1 or �ðfÞ ¼ 2,

then our second assertion is also true. Otherwise, we

have maxf2; �f þ 1g < � <1. However, in this

case, with a similar reasoning as in Step 2 in the

proof of Theorem 2.1, we can deduce a similar

contradiction. We omit all those details.
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