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Abstract:

Let M be a differential module, whose coefficients are analytic elements on

an open annulus I (C Rso) in a valued field, complete and algebraically closed of inequal
characteristic, and let R(M,r) be the radius of convergence of its solutions in the neighborhood
of the generic point t, of absolute value r, with r € I. Assume that R(M,r) < r on I and, in the
logarithmic coordinates, the function r — R(M,r) has only one slope on I. In this paper, we
prove that for any r € I, all the solutions of M in the neighborhood of ¢, are analytic and bounded

in the disk D(¢t,, R(M,r)7).
Key words:

1. Notations and Preliminaries. Let p be
a prime number, Q, the completion of the field of
rational numbers for the p-adic absolute value .|,
C, the completion of the algebraic closure of Q,,
and 2, a p-adic complete and algebraically closed
field containing C, such that its value group is
Ry and the residue class field is strictly tran-
scendental over Fy~. For any positive real r, ¢, will
denote a generic point of 2 such that |¢,| = r. Let T
be a bounded interval in Ro. We denote by A(T)
the ring of analytic functions, on the annuli

C(l)=={acQ,|ld €I}, A(l) = {Zanx” €

nez

C,llz,1/2]] | lim |an|r”:0,V7"€I}, and by
n—Foo

H(I) the completion of the ring of rational fractions

f of C,(«) having no pole in C(I) with respect to the

norm | f|l; :=sup|f(t;)]. It is well known that
rel

H(I) C A(I), with equality if I is closed. We define,
for any r € I, the absolute value |.|, over A(I) by

‘ g a,x"

neZ

= sup |a,|r".

r neZ

Let R(I) denotes A(I) or H(I). A free R(I)-
module M of finite rank p is said to be R(I)-
differential module if it is equipped with a R(I)-
linear map D: M — M such that D(am) =
d(a)m + aD(m) for any a € R(I) and any m € M
where 0 =d/dz. To each R(I)-basis {e;},.;c, of
M over R(I) corresponds a matrix G = (Gy;) €
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p-adic differential equations; Frobenius antecedent theorem.

I
M, (R(I)) satisfying D(e;) ZZszeyy called the

J=1
matrix of @ with respect to the R(I)-basis {e;},;-,
or simply an associated matrix to M, together with
a differential system 0X = GX where X denotes
a column vector p x 1 or p X p matrix (see [2,3]).
If G' e M,(R(I)) is the matrix of 0 with respect
to another R(I)-basis {e{},;c, of M and if H =
(Hi;) € GL,(R(I)) is the change of basis matrix

I
defined by €, = ZHijei for all 1<i<p, it is
i=1
known that:

- the matrices G and G are related by the
formula G' = HGH™' + 9(H)H'. The matrix
HGH™' + 9(H)H! is denoted H[G].

- if Y is a solution matrix for the system % X =
GX with coefficients in a differential field
extension of R(I), then the matrix HY is a
solution matrix for -2 X = H[G]X.

Generic radius of convergence. Let M be
an R(I)-differential module of rank u, G = (Gj;) €
M, (R(I)) an associated matrix to M, (G,), a
sequence of matrices defined by

GO = I/J, and Gn+1 = a(Gn) + GnG7

and ||G||, = max|Gj;|, be the norm of G associated
to the absolifte value |.|,. For any 7€, the
quantity R(M,r) = min(r, liminf ||G,L||T_1/") repre-
sents the radius of convergeﬁgeooin the generic disc
D(t,,r") of the solution matrix
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SO oy

n>0

of the system L X = GX with X(t,) = I,. We know
that the function r — R(M,r) is independent of the
choice of basis and the ring R(I) [3, Proposition 1.3],
and the graph of the map p — logoR(M,exp(p)),
on any closed subinterval of I, is a concave polygon
with rational slopes [5, Theorem 2]. This graph is
called the generic polygon of the convergence of M.
The system 0X = GX is said to have an analytic
and bounded solution in the disk D(t,, R(M,r)") if

G,
nl

uG,f,,. (x) =

sup R(M,r)" < .

n>0

r

The R(I)-differential module M is said to be non-
Robba if R(M,r) < r for all r € I.

Let ¢ :C(I) — C(I?) be the Fro-
benius ramification x — ¥, where I? is the image
of I by the map x +— 2. A R(I?)-differential module
N is said to be a Frobenius antecedent of an R(I)-
differential module M if M is isomorphic to the
inverse image ©*N of N. In other words, if there
exists a matrix F € M,(R(I?)) of the derivation
d/dz (where z = a”) in some R(I?)-basis of N such
that pz?~'F(2?) is a matrix of d/dz in some R(I)-
basis of M. The existence of such a Frobenius
antecedent depends of the values of the function
r+— R(M,r). Recall the Frobenius structure theo-
rem of Christol-Mebkhout [4, Theorem 4.1-4] where
= pfl/pfl:

Theorem 1.1. Let h be a positive integer
and let M be a R( )-differential module such
that R(M,r) > rz'/P"" for all v € I. Then, there
exists an R(I?")- differential module Ny, such that
(") Ny = M and R(M,r) = RNy, 17" for any
rel, and Ny, is called a Frobenius antecedent of
order h of M.

In particular, if a R(I)-differential module
M satisfies R(M,r) > rm for all r €I, it has a
Frobenius antecedent.

2. Main theorem. In this section, I denotes
an open interval in Ry and M a non-Robba A(I)-
differential module associated to some matrix
G € M,(A(D)).

Theorem 2.1. Assume that the generic pol-
ygon of convergence of M has only one slope. Then

Gy
nl

Frobenius.

rel.

sup R(M,r)" < oo for all

n>0 r
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The proof of this theorem is based on the
following lemmas:

Lemma 2.2. Assume R(M,r) > zr forallr €
I and let N be a Frobenius antecedent of M. Let F' be
an associated matriz to N and assume there exists a

real vy € I such that sup

Fﬂ AL
_"HTPR(N, rh)" < oo. Then
N 0

n>011 M
G, n
sup ' (M, 7’0) < 0.
n>0
Proof The matrix V(z) = (Vij(2));; =
Fy(tr ,
Vi (2) = ; —T(L! ) (z— )" is the solution matrix

of the differential system -£V(z)= ()V(z
the neighborhood of #} with z = 2 and V(t,») =
The change of Varlables leads to diV(:c )
prP~LF(2P)V(2P). In addition, since R(M,ry) > 7y,
the map z+ zP sends the closed disk D(¢,,,
R(M,rg)) into D(t , R(M,ry)") = (tp R(N 1))
[1,Lemma 3.1], —t "=

To
( Fn(t” )
sup
n>0

for all x € D(t,,, R(M,ry)). In the neighborhood of
tr,, the matrix Vp» (2) can be written as V(z?) =
> Bu(x —ty,)" where B, = (B,(i,j));

n>0
matrices with entries un €. In that case, we

have lim |B,(i,5)|p" =0 for any p< R(M,ry),
n—oo

and  sup,> i

‘ B S lx—tm\") =

0
are v X v

and therefore

(2.1) sup

2E€D(tr,,p)

sup | By (i, j)|p" = Vi ()]
n>0

< sup

[Vij(2)]
2Dt 7)

E,(t
N EACH

n>0

P

Since the matrix V(z) is analytic and bounded
in  D(th ,R(N,r()"), there exists a positive
constant C' >0, by [2,Proposition 2.3.3], such
that

n!

Fo(t)

To

n!

(2.2) sup P < C
n>0

for any p < R(M,ry) and close to R(M, ). Combin-
ing (2.1) and (2.2), and using again [2, Proposition 2.3.3],
we find sup,>q By (i, j)|R(M,79)" < oo for all 1<
i,7 < v, and therefore, the matrix V(2?) is analytic
and bounded in the disk D(¢,, R(M,ry)”). In
addition, since the matrix pzP~!F(zP) is associated
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to M, then there exists an invertible matrix H €
GL,(A(I)) (hence H is analytic and bounded in the
disk D(t,,, R(M,rg)")) such that

G = Hlpa? ' F(a")].

Thus, by [2, Proposition 2.3.2], the matrix HV(aP) is
a solution to the system 0X = GX in the neighbor-
hood of t,,,, and moreover it is analytic and bounded
in the disk D(¢,,, R(M,r9)”). This means that
Ugy, (r) = HV(zP)H(t,)”" is also analytic and
bounded in the disk D(t,,, R(M,ry)"). O

Lemma 2.3. The set of reals rin I for which

sup
n>0

(/\/l r)" < oo

nl

is dense in I.

Proof. Let J be a closed subinterval of I not
reduced to a point and let p be a real number in the
interior of J. Then, by hypothesis, R(M,p)/p < 1
and therefore there exists an integer h such that
/7" < R(M, p)/p < /7" Since the function r —
R(M,r) is continuous on J, there exists an open
subinterval J' C J containing p such that 7/7''r <
R(M,r) < /Py for all r € J'.

There are two cases to consider:

Case 1: h < 0.

Let H(J') be the quotient field of H(J'). By
cyclic vector lemma, we can associate H(T) @ M
to a differential equation A(H(J)®@ M) = 0" +
@ ()" + -+ qu(x), where ¢ € H(J') for i=
1,...,u. Now pick a nonempty subinterval J” of J’
such that ¢ € H(J") for i=1,...,u, and let ry
be a real number in the interval J” and A(rg) be
the maximum of the p-adic absolute values of
the roots of the polynomial A(H(J) @ M) =M +

Gt N 4 gt Since (M) =
R(H( )®/\/l ro) < T/'rg < 7y, by Virtue
of [6, Theorem 3.1], we have log(R(M, 1)) = -+ L+
log(A(rg)) and all the solutions wy,...,u, of
A(H(J) ® M) in the neighborhood of t,,, are analytic
and bounded in the disk D(¢,,, R(M,ry)”). Now let

W be the wronskian matrix of (ui,...,w,). Then, W
is a solution of the system 90X = AA(H< ,)®M)X where
0 1 0 ... 0
0 0 1 ... 0
Ancnem = | : . :
0 0 0 1
—qu —qu-1 —Yqu-2 —q1
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, Proposition 2.3.2], the matrix W is
analytic and bounded in the disk D(t,,, R(M,rg)").
Since G and Ay e are associated to H(J") ®
M, there exmtb a matrix H € GL,(H(J")) such
that G = H[AA e Since R(M,ro) < g, the
matrix H is analytic and bounded in the disk
D(t,,, R(M,19)"). Hence, by [2, Proposition 2.3.2],
the matrix Ug,, (z) = HWH(t,) " is also analytic
and bounded in the disk D(¢,,, R(M,ry)). This ends
the proof of the lemma in this case.
Case 2: h > 0.

Applying Theorem 1.1 to H(J") ® M, there exists a
H(J"")-differential module A, which is a Frobenius
antecedent of order h of H(J)® M. Moreover,
RN, p) < p for all pe J7. Let "F be an associ-
ated matrix of N'j,. Then, by case 1, there exists ry €
J such that hF is analytic and bounded in the disk

D7 ,U, RNy, 7 ")). The proof of the lemma in this
case can be concluded by iteration of Lemma 2.2. (I

Proof of Theorem 2.1. By hypothesis, the

generic polygon of convergence of M has only one
slope. This slope is a rational number by [5, Theorem 2].
Thus, we may assume there exist « € C, and § € Q
such that R(M,r) = |a|r’ for all r € 1.
Let now r be a real in the interior of I. Then, by
Lemma 2.3, there exist two reals r1,r9 € I such that
r<r< 7“2 with sup,- || |, R(M,r)" <00 and
supn>0 | & o HTQR(M )" < 00, which are equivalent
G’,’ a"z"||, < oo and
SUup,,>0 | € Seang"f|| < oo. Since all the matrices
oz ’Gn have all their entries in H[ri,r], and
for any element f &€ H([r1,m2]), we have |f]| <
max(|f|, ,|f],,), then for any integer n > 0, we have

Moreover, by [2

G G, , .
— RM, )" < || —amz"?
nl||, n! ,
G G )
< max H—Ta”x"ﬂ , —704"36"*’
n! . vy
G,
< max | sup —a”x”d ,sup||— a"z"? .
n>0 n nz0| n! ry
Hence, for
sup||—- (./\/l r)"
n>0 || T
G, G,
< max| sup —a"x"g , Sup —a”x”ﬂ
n>0 r n>0 -
< o0.



No. 3] A note on non-Robba p-adic differential equations 43

References

[ 1] F. Baldassarri and B. Chiarellotto, On Christol’s
theorem. A generalization to systems of PDE’s
with logarithmic singularities depending upon
parameters, in p-adic methods in number theory
and algebraic geometry, Contemp. Math. 133
(1992), 1-24.

[ 2 ] G. Christol, Modules différentiels et équations
différentielles p-adiques, Queen’s Papers in
Pure and Applied Mathematics, 66, Queen’s
Univ., Kingston, ON, 1983.

[3]

[4]

[5]

G. Christol and B. Dwork, Modules différentiels
sur des couronnes, Ann. Inst. Fourier
(Grenoble) 44 (1994), no. 3, 663-701.

G. Christol and Z. Mebkhout, Sur le théoreme de
I'indice des équations différentielles p-adiques.
III, Ann. of Math. (2) 151 (2000), no. 2, 385
457.

E. Pons, Polygone de convergence d’un module
différentiel p-adique, C. R. Acad. Sci. Paris Sér.
I Math. 327 (1998), no. 1, 77-80.

P. T. Young, Radii of convergence and index for p-
adic differential operators, Trans. Amer. Math.
Soc. 333 (1992), no. 2, 769-785.



	c_rf1
	c_rf2
	c_rf3
	c_rf4
	c_rf5
	c_rf6

