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Abstract: We consider a family of singular unitary representations which are realized in

Dolbeault cohomology groups over indefinite Grassmannian manifolds, and find a closed formula

of irreducible decompositions with respect to reductive symmetric pairs ðA2n�1; DnÞ. The resulting
branching rule is a multiplicity-free sum of infinite dimensional, irreducible representations.
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1. Introduction. One of basic problems in

representation theory is to understand how a given

representation is built up from irreducible repre-

sentations. Typical cases are the decomposition of

induced representations (e.g. Plancherel formulas

for homogeneous spaces) and the decomposition of

the restriction (branching rules, fusion rules, etc.).

For finite dimensional representations of com-

pact Lie groups, there exist well-known com-

binatorial algorithms for branching rules such as

Littlewood–Richardson’s rules and their variants.

How about infinite dimensional representations?

As of now, there has been no known algorithm

for branching rules of general infinite dimen-

sional representations when restricted to non-

compact subgroups. To be worse, they may involve

infinite multiplicities when the irreducible decom-

position contains continuous spectrum even for

the restriction with respect to symmetric pairs

(see [13,15]).

The concept of ‘‘admissible restrictions’’ of

unitary representations of reductive Lie groups

singles out an especially nice setting of branching

problems, and has opened a promising and concrete

analysis after Kobayashi’s pioneering and funda-

mental work [6,7,9,10]. See [2,3,13,15,19,21,22] for

some of recent works by Duflo, Gross, Kobayashi,

H.-Y. Loke, Ørsted, Speh, Vargas, and Wallach

among others in this framework.

In this paper, we highlight a specific branching

problem where irreducible unitary representations

are realized as Dolbeault cohomology groups

on non-compact indefinite Kähler manifolds

Grþk ðC
n;nÞ. Our representations, to be denoted by

�k, are non-tempered irreducible unitary represen-

tations of G ¼ Uðn; nÞ for k < n. The representation

�k in the case ðn; kÞ ¼ ð2; 1Þ appeared in the twister

theory by R. Penrose (see [27]). We shall see that

the restriction of �k with respect to the symmetric

pair ðG;G0Þ :¼ ðUðn; nÞ; SO�ð2nÞÞ lies in the frame-

work of admissible restrictions.

In the group language, our object may be

written symbolically as

L % G & G0;

where L % G stands for cohomologically induced

representations with respect to a symmetric pair

ðG;LÞ :¼ ðUðn; nÞ; UðkÞ � Uðn� k; nÞÞ

and G & G0 stands for the restriction of irreducible

unitary representations of G with respect to another

symmetric pair

ðG;G0Þ ¼ ðUðn; nÞ; SO�ð2nÞÞ:

We expand these Dolbeault cohomology groups

as a direct sum of the Dolbeault cohomology groups

over its complex submanifold defined by G0 ¼
SO�ð2nÞ by using ‘normal derivatives’ for the

cohomology groups. Our technique may be regard-

ed as a cohomological version of the classic tech-

nique used for holomorphic sections in Jakobsen–
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Vergne [5]. The resulting formula of the restric-

tion (see Theorem 2 below) is a generalization

of a special case of the Hua–Kostant–Schmid–

Kobayashi formula [16,23] for the restriction of

holomorphic discrete series representations with

respect to semisimple symmetric pairs.

2. Main theorem. We denote by Cn;n the

2n-dimensional complex vector space C2n endowed

with the indefinite quadratic form of signature

ðn; nÞ:

QðzÞ :¼ z1z1 þ � � � þ znzn � znþ1znþ1 � � � � � z2nz2n:

We say a k-plane � in C2n is positive if the

restriction Qj� is positive definite. The positivity

condition forces k to be k � n. Then, the set

Grþk ðC
n;nÞ of positive k-planes in Cn;n forms a

non-empty open subset of the Grassmannian mani-

fold GrkðC2nÞ, and consequently it carries a com-

plex structure.

The indefinite unitary group G ¼ Uðn; nÞ is

defined to be the subgroup of GLð2n;CÞ which

preserves QðzÞ. The group G acts biholomorphically

and transitively on Grþk ðC
n;nÞ. We then have a

diffeomorphism Grþk ðC
n;nÞ ’ G=LðkÞ, where

LðkÞ :¼ UðkÞ � Uðn� k; nÞ

is the isotropy subgroup at the origin o :¼
Ce1 þ � � � þCek. Then the pair ðG;LðkÞÞ forms a

reductive symmetric pair for every k � n. We

note that

K :¼ LðnÞ ’ UðnÞ � UðnÞ

is a maximal compact subgroup of G and G=K

is realized as a bounded symmetric domain in

Mðn;CÞ ’ Cn2

. For k < n, LðkÞ is non-compact,

and the homogeneous space G=LðkÞ is a 1
2-Kähler

symmetric space in the terminology of M. Berger’s

classification [1].

For m 2 Z, we define a one-dimensional repre-

sentation by

�m : LðkÞ ! C�; ða; dÞ 7! ðdet aÞm:

Then, associated to the principal LðkÞ-bundle G !
Grþk ðC

n;nÞ, we get a G-equivariant holomorphic line

bundle

Lm :¼ G�LðkÞ ð�m;CÞð1Þ

over G=LðkÞ ’ Grþk ðC
n;nÞ. We note that the canon-

ical line bundle over Grþk ðC
n;nÞ is isomorphic to L2n

in our normalization.

By the closed range theorem of the �@@-operator

due to W. Schmid and H.-W. Wong [28], the

Dolbeault cohomology group Hj
�@@
ðGrþk ðC

n;nÞ;LmÞ
carries a Fréchet topology for any j and m, on

which we can define a continuous representation of

G by translations. Throughout the paper we use the

lowercase German letter g to denote the complex-

ification of the Lie algebra of a Lie group G. Then

the complex Lie algebra g also acts on the Fréchet

space Hj
�@@
ðGrþk ðC

n;nÞ;LmÞ.
Let m ¼ n. The underlying ðg; KÞ-module of

Hj
�@@
ðGrþk ðC

n;nÞ;LnÞ is denoted by V ðj; k; nÞ. We

have:

Lemma 1.

(1) V ðj; k; nÞ ¼ 0 if j 6¼ kðn� kÞ.
(2) V ðj; k; nÞ is unitarizable if j ¼ kðn� kÞ.
(3) V ðj; k; nÞ is a non-zero, irreducible, ðg; KÞ-

module if j ¼ kðn� kÞ.
(4) V ðj; k; nÞ is UðnÞ-admissible where UðnÞ is

embedded in K as g 7! ðg; g�1Þ.
Outline of Proof. We note that V ðj; k; nÞ is

represented as Zuckerman’s derived functor module

whose parameter wanders outside the ‘good range’

but still lies in the ‘weakly fair range’ in the sense of

Vogan [26]. Hence the statements (1) and (2) follow

from the general theory of Zuckerman’s derived

functor modules [25]. The statement (3) is a little

more subtle. For this, we use the Beilinson–

Bernstein theory for the irreducibility, and the K-

type formula for the non-vanishing (see [8,11,24,26]).

Finally, we see that V ðj; k; nÞ is UðnÞ-admissible

by applying the criterion [7, Theorem 3.2] (or

alternatively [12, Theorem 7.4]) for the admissibility

of restrictions. �

Next, we set Jn ¼ O In
In O

� �
; and define an

involutive automorphism � of G by

�ðgÞ :¼ Jn
tg�1Jn:

Let G0 be the identity component of the fixed point

group

G� :¼ fg 2 G : �ðgÞ ¼ gg:

Then G0 is isomorphic to SO�ð2nÞ, and ðG;G0Þ ¼
ðUðn; nÞ; SO�ð2nÞÞ forms a reductive symmetric pair.

We write Y for the G0-orbit through the origin

o in Grþk ðC
n;nÞ. It is a closed complex submanifold

of Grþk ðC
n;nÞ, on which G0 acts biholomorphically.

As a homogeneous space, Y is written as Y ’ G0=L0,
where
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L0 :¼ UðkÞ � SO�ð2n� 2kÞ:
For b ¼ ðb1; � � � ; bkÞ 2 Zk such that b1 � � � � � bk,

we write ð�UðkÞ
b ; VbÞ for the irreducible finite dimen-

sional representation ofUðkÞ having the highest weight
b, and extend it to L0 by letting SO�ð2n� 2kÞ act

trivially. The resulting representation of L0 is denoted
by the same letter Vb. Associated to the principal

L0-bundle L0 ! G0 ! Y , we define a G0-equivariant
holomorphic vector bundle Vb over Y ’ G0=L0 by

Vb :¼ G0 �L0 Vb:

Let K0 :¼ K \G0 ’ UðnÞ, which is a maximal

compact subgroup of G0. We note that K0 ’ UðnÞ is
embedded in K ’ UðnÞ � UðnÞ as g 7! ðg; g�1Þ.

It follows from Lemma 1 (4) that the space

of K0-finite vectors in H
kðn�kÞ
�@@

ðGrþk ðC
n;nÞ;LnÞ coin-

cides with that of K-finite vectors owing to

[10, Proposition 1.6]. This is a dense subspace in

the Fréchet space H
kðn�kÞ
�@@

ðGrþk ðC
n;nÞ;LnÞ, which is

stable by the action of the Lie algebra g ’ glð2n;CÞ.
Here is our main theorem:

Theorem 2. For any 0 � k � n, we have an

algebraic direct sum decomposition:

H
kðn�kÞ
�@@

ðGrþk ðCn;nÞ;LnÞK
’

M
a1�����ak�0
a1;���;ak2N

H
kðn�kÞ
�@@

ðY ;Vð2a1þn;���;2akþnÞÞK0 :

The left-hand side is an irreducible glð2n;CÞ-
module, whereas the summands in the right-hand

side are soð2n;CÞ-modules. The resulting branching

rule is multiplicity-free. Taking its Hilbert com-

pletion, we also obtain the branching rule of the

irreducible unitary representation of G ¼ Uðn; nÞ
when restricted to the subgroup G0 ¼ SO�ð2nÞ.

Detailed proof of Theorem 2 will appear else-

where.

3. Concluding remarks.

3.1. Size of irreducible summands. For an

irreducible representation � of a real reductive

group G, we denote by Vgð�Þ the associated variety

of its underlying ðg; KÞ-module. The dimension of

Vgð�Þ equals the Gelfand–Kirillov dimension of �,

and Vgð�Þ may be regarded as a coarse measure of

the ‘size’ of �.

Suppose G0 is a reductive subgroup of G, and

we take a maximal compact subgroup K of G such

that K0 :¼ K \G0 is a maximal compact sub-

group of G0. Then, by the general theory due to

Kobayashi [10], the associated varieties Vg0 ð�Þ are

all the same for irreducible ðg0; K0Þ-modules � such

that Homg0;K0 ð�; �jðg0;K0ÞÞ 6¼ 0, and furthermore, they

have the following lower bound:

prg!g0 ðVgð�ÞÞ � Vg0 ð�Þ;ð2Þ

where prg!g0 : g
� ! ðg0Þ� is the restriction map. It

follows from the explicit formula in Theorem 2 that

the equality holds in (2) in our setting.

3.2. Finite dimensional analogues. Finite

dimensional analogues of our branching rules have

been found quite recently by combinatorial meth-

ods by S. Okada [20]. In other words, Theorem 2

may be thought of as their infinite dimensional

generalization.

In order to compare them with Theorem 2, we

consider the following replacement:

Grþk ðCn;nÞ ¼) GrkðC2nÞ
Uðn; nÞ ¼) Uð2nÞ

SO�ð2nÞ ¼) SOð2nÞ:
Correspondingly, we replace the infinite di-

mensional representations of Uðn; nÞ on

H
kðn�kÞ
�@@

ðGrþk ðC
n;nÞ;LnÞ by the finite dimensional

representations of Uð2nÞ on H0ðGrkðC2nÞ;L�mÞ
which are irreducible by the classical Borel–Weil

theorem. Then, instead of the setting of Theorem 2

(i.e. the restriction Uðn; nÞ # SO�ð2nÞ), we consider

the restriction Uð2nÞ # SOð2nÞ. Since SOð2nÞ acts

on GrkðC2nÞ in a strongly visible fashion [17], we see

that the spaces H0ðGrkðC2nÞ;L�mÞ decompose as

a multiplicity-free sum of irreducible finite dimen-

sional representations of SOð2nÞ for any 0 < k < 2n

and m owing to Kobayashi’s multiplicity-free

theorem [16, Theorem E] (see also [14]). Explicit

branching rules in the special case k ¼ n were

previously obtained by Okada [20, Theorem 2.6] by

using minor summation formulas of Ishikawa and

Wakayama [4]. (However, Okada’s formula loc. cit.

involves some minor misprints.) Alternatively,

the same branching rules could be computed by

using Richardson–Littlewood, or Koike–Terada’s

algorithm [18].

3.3. Case of discrete series representations.

If � is a discrete series representation of G, then any

irreducible, discrete summand � of the restriction

�jG0 becomes a discrete series representation of

G0 [12]. In this case, Duflo and Vargas [2] announced

combinatorial formulas for its irreducible decompo-

sition in the framework of admissible restrictions
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[7,9,10] by using the Heckman–Duflo–Vergne for-

mula for the quantization of coadjoint orbits. Their

method gives an alternative approach to the case

k ¼ n, but not to the case k < n where the repre-

sentations �k are not tempered.
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