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Abstract: In this article, we study discrete curvature and torsion for spatial polygonal

lines of unit sides. We express geometric conditions on polygons by using inner products of

oriented sides. As a application, we prove a generalization of van der Waerden’s theorem. The

theorem given in this paper and its proof clarify how the conditions on the sides affect the

polygon being planar from the discrete torsion point of view.
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1. Introduction. A celebrated theorem of

B. L. van der Waerden [5] states that an equilateral

and equiangular pentagon in Euclidean 3-space,

E3, must be planar and hence a standard regular

pentagon. On the other hand it is easy to construct

an equilateral and equiangular quadrilateral in E3

which is not planar. In Section 2, after fixing the

notation used in this paper, we will discuss a family

of polygons with any even number of sides, ‘‘crown

type polygons’’, which are equilateral and equian-

gular but not planar. This raises the question of

polygons with an odd number of sides and in

Example 2 we describe a non-planar equilateral

and equiangular heptagon. In this paper we study

the notion of the torsion of a side of an equilateral

and equiangular polygon in E3 with torsion zero

corresponding to a side and its two adjacent sides

being coplanar. The main result of this paper is the

following theorem.

Theorem. Let n be an integer greater than or

equal to 4, and fa1; a2; � � � ; ang the oriented sides of a

closed spatial polygon P with n sides. If the inner

products ai � aiþl, 1 � i � n, are constant for each

fixed integer l ranging from 0 to minf½n=2� � 1; 3g,
then the polygon P is either planar or of crown type

with even sides, where the subscripts of ai are

regarded in terms of modulo n and the symbol ½ �
denotes the Gauss bracket.

This theorem is a direct generalization of the

theorem given by van der Waerden in [5]. When

n ¼ 5, the statement is equivalent to the van der

Waerden’s theorem, and especially when n ¼ 7, we

have the fact that an equilateral and equiangular

heptagon in E3 is planar, if the absolute value of the

torsion of each side is the same.

2. Discrete curvatures and torsions. In

this article, the lengths of the sides of an equilateral

polygon will always be normalized, to be of unit

length. Discrete curvatures and torsions are studied

and applied to various fields such as not only

discrete geometry in [4], but also chemistry and

physics in [1] and [3]. In the following, we redefine

discrete curvature and torsion to fix the notation

used in this paper.

For the vertices fA1; A2; � � � ; Ang of a given

polygon P with n-sides of unit length, set ai ¼
AiAiþ1
����! ði ¼ 1; 2; � � � ; nÞ where we identify Anþ1 with

A1. In this article, we also assume that the adjacent

two vectors ai and aiþ1 are linearly independent for

i ¼ 1; 2; � � � ; n where we also identify anþ1 with a1.

Describing the definitions briefly, the discrete cur-

vature at vertex Aiþ1 is the angle between the two

vectors ai and aiþ1, on the other hand the discrete

torsion of side Aiþ1Aiþ2 is the angle between the two

planes 4AiAiþ1Aiþ2 and 4Aiþ1Aiþ2Aiþ3. The pre-

cise definitions of these notion are given as follows:

Definition. For a normalized equilateral

polygon P with vertices fA1; A2; � � � ; Ang ðAnþ1 ¼
A1Þ, we define an orthonormal frame fXi; Yi; Zig at

each vertex Aiþ1, by

Xi ¼ ai; Yi ¼
aiþ1 � ðaiþ1 � aiÞai
jaiþ1 � ðaiþ1 � aiÞaij

; Zi ¼ Xi � Yi:
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Then, we define a discrete curvature �iþ1 ð0 <
�iþ1 < �Þ at each vertex Aiþ1 and a discrete torsion

�iþ1 ð�� < �iþ1 � �Þ for each side Aiþ1Aiþ2 by the

following formulas.

�iþ1 ¼ cos�1ðXi �Xiþ1Þ;

�iþ1 ¼
cos�1ðZi � Ziþ1Þ if Zi � aiþ2 � 0;

�cos�1ðZi � Ziþ1Þ if Zi � aiþ2 < 0:

(

These are defined regardless of orientation of the

curve.

A1

A2

A3

A4

A5

κ2

κ3

κ4τ2

τ3

a1 a4

a2

a3

From the Definition above, we can immediately

derive the following expression for a normalized

equilateral polygon, using inner products.

cos�iþ1 ¼ Xi �Xiþ1 ¼ ai � aiþ1;

cos �iþ1 ¼ Zi � Ziþ1ð1Þ

¼ �
jaiþ1j2ai � ðai � aiþ1Þaiþ1

jjaiþ1j2ai � ðai � aiþ1Þaiþ1j

�
jaiþ1j2aiþ2 � ðaiþ2 � aiþ1Þaiþ1

jjaiþ1j2aiþ2 � ðaiþ2 � aiþ1Þaiþ1j

¼
ðai � aiþ1Þðaiþ1 � aiþ2Þ � ai � aiþ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðai � aiþ1Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðaiþ1 � aiþ2Þ2

q :

Remark. The notion of torsion angle has

been also defined in structural chemistry merely as

the angle between two planes ([1], note 5). The

discrete torsion with explicit signatures is defined

in [3] to study discrete Frenet frames.

By comparison with the curvature and torsion

of smooth curves we note the following; see e.g. [2],

Sec. 6.1 and Sec. 6.3. Let p be a point on a smooth

curve and ! the angle between the tangent at p and

the tangent at a nearby point q. Let jhj be the

distance from q to p along the curve. Then the

curvature at p is the limit of the ratio !=h as

h �! 0. Similarly let  be the oriented angle

between the osculating plane at p and the osculat-

ing plane at q. Then the torsion of the curve at p is

the limit of  =h as h �! 0.

With regard to the constant case for discrete

curvatures and torsions, we have the following

proposition. This fact will be used in the proof of the

Theorem in Section 3.

Proposition. Any broken curve C of equi-

lateral line segments does not close if the discrete

curvatures and torsions are constants excluding 0

and �.

Proof. Let fa1; a2; � � � ; amg, m � 3, denote the

oriented sides of the given curve C. Without losing

general conditions, we may assume that the length

of the sides are equal to one. When we regard the

vectors fa1; a2; � � � ; amg as position vectors in E3,

the points fa1; a2; � � � ; amg also define an equilateral

curve C0 in E3 whose curvatures are equal to

the discrete torsions of C when the sides of

C0 are normalized. Therefore, all the points

fa1; a2; � � � ; amg exist in a small circle on the unit

sphere with the origin as its center. Hence, the

center of gravity of the points fa1; a2; � � � ; amg
satisfies that

Pm
i¼1 ai=m 6¼ 0, which means that the

curve C does not close. �

Definition. A crown type polygon is defined

to be a spatial equilateral and equiangular polygon

whose discrete torsions f�ig have the same absolute

value and the signs of fsin �ig alternate with respect

to the subscript i.

The number of sides of any crown type polygon

is even. Moreover, there exists a crown type

polygon for any even number of sides greater than

or equal to four. In fact, we can realize any crown

type 2m-gon (m � 2) in a 2m-gon prism as follows:

Let w be a natural number which is less than and

relatively prime to 2m, and r a positive real number

less than 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos w�m

p
. Then, for i ¼ 1; 2; � � � ;m,

the 2m points

Ai r cos �i; r sin �i;
ð�1Þi

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2 cos �i � 1ð Þ þ 1

p !
;

where we have set �i :¼ iw�=m, are vertices of a

normalized crown type 2m-gon.

A1

A2
A3

A4

A5

A6

(The case of m = 3, w = 1)

The discrete curvatures and torsions of this polygon

satisfy
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cos�i ¼ 1� 2r2 sin2 w�

m
;

cos �i ¼
r2 sin2 w�

m
� cos w�

m

1� r2 sin2 w�
m

:

Conversely, we have from these formulas that

this class of given crown type polygons can be

uniquely determined by the discrete curvature and

torsion.

Example 1. Any equilateral and equiangu-

lar polygon with four sides is either planar or of

crown type as stated in the Theorem. On the other

hand, there exists a non-crown type spatial equi-

lateral and equiangular polygon for any even

number of sides greater than or equal to six: For

example,

Ai i� 1�
i� 1

2

� �
;
i� 1

2

� �
; 0

� �
;

A2mþ1�i i� 1�
i� 1

2

� �
;
i� 1

2

� �
; 1

� �
;

i ¼ 1; 2; � � � ;m ðm � 3Þ, is an equilateral and equi-

angular spatial 2m-gon of non-crown type, where

the symbol ½ � denotes the Gauss bracket.

A1 A2

A3 A4

A5 A6

A12 A11

A10 A9

A8 A7

(The case of m = 6)

The discrete torsions of this polygon are written as

follows:

m : odd

�1 ¼ ��2; �2 ¼ � � � ¼ �m�2 ¼ 0;

�m�1 ¼ �
2; �m ¼ 0;

�mþ1 ¼ ��2; �mþ2 ¼ � � � ¼ �2m�2 ¼ 0;

�2m�1 ¼ �
2; �2m ¼ 0:

8>>><
>>>:

m : even

�1 ¼ ��2; �2 ¼ � � � ¼ �m�2 ¼ 0;

�m�1 ¼ ��2; �m ¼ 0;

�mþ1 ¼ �
2; �mþ2 ¼ � � � ¼ �2m�2 ¼ 0;

�2m�1 ¼ �
2
; �2m ¼ 0:

8>>><
>>>:

Example 2. Here, we show the necessity

of an additional condition to generalize van der

Waerden’s theorem by constructing an equilateral,

equiangular heptagon which is not planar. Begin

with three sides, s3, s4, s5, of a square of unit length

and consider the plane perpendicular to the parallel

sides (s3, s5) at the open end of the square. In this

plane we have considerable latitude in choosing two

unit segments, s2, s6, attached to the sides of the

open square, s3, s5, respectively. Imagine these

symmetrically placed and diverging from a direc-

tion perpendicular to the plane of the square so that

the distance between the endpoints is
ffiffiffi
2
p

. Next

form a right angle with two unit segments, s1, s7,

which will form the remaining sides of the heptagon.

We may now attach s1 to s2 and s7 to s6 at right

angles.

Using coordinates, vertices of such a heptagon

can be given by the following points:

A
	

1

3þ
ffiffiffi
2
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

ffiffiffi
2
pp ; 0;

	
ffiffiffi
7
p

1þ 2
ffiffiffi
2
p

 !
;

A2
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

ffiffiffi
2
pq

;

ffiffiffi
2
p

2
; 0

 !
; A3 0;

1

2
; 0

� �
;

A4 0;
1

2
; 1

� �
; A5 0; �

1

2
; 1

� �
; A6 0; �

1

2
; 0

� �
;

A7
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

ffiffiffi
2
pq

; �
ffiffiffi
2
p

2
; 0

 !
:

A1

A2

A3

A4A5

A6

A7

s1s7

s2s6

s3s5

s4

2

Moreover, maintaining the required property, this

heptagon can be prolonged to ð2mþ 1Þ-gon, m � 4,

by replacing side s4 with sides of unit cubes

appropriately. (Compare with the construction in

Example 1.)

3. Proof of the Theorem. In this section,

we prove the Theorem stated in Introduction. After

that, we will give a supplementary explanation of

the requisite conditions of the Theorem.

We suppose in this section that the sides have

been normalized. From the given condition con-

cerning inner products, we may set pl :¼ ai � aiþl for

i; l ranging 1 � i � n and 0 � l � minf½n=2� � 1; 3g.
To prove the Theorem in a simple manner, we state

the following lemma.
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Lemma. Let n be an integer between 4 and 7,

inclusive, and fa1; a2; � � � ; ang the oriented sides of a

closed spatial polygon P with n sides. If the inner

products ai � aiþl, 1 � i � n, are constant for each

fixed integer l, ranging 0 � l � ½n=2� � 1, then the

inner products ai � aiþl, 1 � i � n, are also constant

for each fixed l, ranging ½n=2� � l � 3, where the

subscripts of ai are regarded in terms of modulo n.

Proof. When n ¼ 4, the formula ai � aiþ3 ¼ p1

is obvious. From

ðai þ aiþ1 þ aiþ2 þ aiþ3Þ � ai ¼ 0

we have that p0 þ p1 þ aiþ2 � ai þ p1 ¼ 0, that is

aiþ2 � ai ¼ �p0 � 2p1.

When n ¼ 5, the formula

ai � aiþ2 ¼ ai � aiþ3 ¼ �
1

2
p0 � p1

is proved in [1], so we omit the proof.

When n ¼ 6, from

ðai þ aiþ1 þ aiþ2 þ aiþ3 þ aiþ4 þ aiþ5Þ � ai ¼ 0

we have that

p0 þ p1 þ p2 þ aiþ3 � ai þ p2 þ p1 ¼ 0;

that is aiþ3 � ai ¼ �p0 � 2p1 � 2p2.

When n ¼ 7, we can obtain the formula

ai � aiþ3 ¼ �
1

2
p0 � p1 � p2ð2Þ

as follows: Since the polygon P is closed, we have

a1 þ a2 þ a3 þ a4 þ a5 þ a6 þ a7 ¼ 0:

Taking the inner products with the vectors ai, we

have

p0 þ 2p1 þ 2p2 þ a1 � a4 þ a1 � a5 ¼ 0;ð3Þ
p0 þ 2p1 þ 2p2 þ a2 � a5 þ a2 � a6 ¼ 0;ð4Þ
p0 þ 2p1 þ 2p2 þ a3 � a6 þ a3 � a7 ¼ 0;ð5Þ
p0 þ 2p1 þ 2p2 þ a4 � a7 þ a4 � a1 ¼ 0;ð6Þ
p0 þ 2p1 þ 2p2 þ a5 � a1 þ a5 � a2 ¼ 0;ð7Þ
p0 þ 2p1 þ 2p2 þ a6 � a2 þ a6 � a3 ¼ 0;ð8Þ
p0 þ 2p1 þ 2p2 þ a7 � a3 þ a7 � a4 ¼ 0:ð9Þ

Half of the sum of the above seven equalities, (3) to

(9), gives rise to

7

2
p0 þ 7p1 þ 7p2 þ a1 � a4 þ a1 � a5 þ a2 � a5ð10Þ

þ a2 � a6 þ a3 � a6 þ a3 � a7 þ a4 � a7 ¼ 0:

The sum of the three equalities (7), (8), and (9) is

3p0 þ 6p1 þ 6p2 þ a5 � a1 þ a5 � a2 þ a6 � a2ð11Þ
þ a6 � a3 þ a7 � a3 þ a7 � a4 ¼ 0:

From the difference between the formulas (10) and

(11), we obtain that

a1 � a4 ¼ �
1

2
p0 � p1 � p2:

By substituting this formula in (3), we also have

a1 � a5 ¼ �
1

2
p0 � p1 � p2:

Likewise we can know the other value of the inner

product ai � aiþ3 and thus obtain the formula (2). �

Proof of the Theorem. From the Lemma

above, we may set pl :¼ ai � aiþl for i; l ranging 1 �
i � n and 0 � l � 3. Set ~aai :¼ ai þ aiþ1 for 1 � i � n.

Since
Pn

i¼1 ~aai ¼ 0, the vectors f~aa1; ~aa2; � � � ; ~aang can be

regarded as the oriented sides of a spatial polygon.

We denote this polygon by ~PP . Then we have

~aai � ~aai ¼ 2p0 þ 2p1;ð12Þ
~aai � ~aaiþ1 ¼ p0 þ 2p1 þ p2;ð13Þ
~aai � ~aaiþ2 ¼ p1 þ 2p2 þ p3:ð14Þ

Formulas (12), (13), and (14) imply that the

discrete curvatures of the polygon ~PP are constant

and that the absolute values of the torsions for ~PP
are also constant. Let ~�i�i, i ¼ 1; 2; � � � ; n, denote the

discrete torsions of ~PP . If fsin ~��ig ¼ f0g, then ~PP is

planar. Otherwise, there must exist consecutive two

discrete torsions ~��k and ~��lþk for which the signs of

sin ~��k and sin ~��kþ1 are the opposite of each other due

to the Proposition. In this case, the configuration of

the five points

fAk�1; Ak; Akþ1; Akþ2; Akþ3g 
 E3

has a symmetry with respect to the 2-plane defined

by

X 2 E3; Akþ1X
����! � AkAkþ2

����! ¼ 0
n o

:

Therefore, the vectors f~aak�1; ~aak; ~aakþ1g are linearly

dependent, and hence sin ~��k ¼ 0. Here we note that,

from the formulas (1), (12), (13), and (14), the

formula for sin2 ~��i can be written in terms of

p0; p1; p2; and p3, so their values are independent

of the subscript i, which implies that sin ~��i is

identically zero for i ¼ 1; 2; � � � ; n, and hence ~PP

must be planar. Therefore, the rank of the 3� n
matrix ðt~aa1;

t~aa2; � � � ; t~aanÞ is two.
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Case 1: The case that n is odd number. Since

a1 ¼ �~aa2 � ~aa4 � ~aa6 � � � � � ~aan�1;

a2 ¼ �~aa3 � ~aa5 � ~aa7 � � � � � ~aan;

a3 ¼ �~aa1 � ~aa4 � ~aa6 � � � � � ~aan�1;

a4 ¼ �~aa2 � ~aa5 � ~aa7 � � � � � ~aan;

..

.

an ¼ �~aa1 � ~aa3 � ~aa5 � � � � � ~aan�2;

8>>>>>>>>><
>>>>>>>>>:

the rank of the 3� n matrix ðta1;
ta2; � � � ; tanÞ is also

two. Consequently, we have that the polygon P is

planar.

Case 2: The case that n is even number. By the

same manner as in the proof of the Proposition in

Section 2, we regard the vectors fa1; a2; � � � ; ang as

position vectors in E3. Since the lengths

jaiþ1 � aij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p0 � 2p1

p
;

jaiþ2 � aij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p0 � 2p2

p
;

jaiþ3 � aij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p0 � 2p3

p
;

jaiþ2 � aiþ1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p0 � 2p1

p
;

jaiþ3 � aiþ1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p0 � 2p2

p
;

jaiþ3 � aiþ2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p0 � 2p1

p
are constant, either all the points fa1; a2; � � � ; ang
exist in a great circle on the unit sphere with the

origin as its center for P to be closed and then P

is planar, or we know by the symmetry of the

configuration of the four points fai; aiþ1; aiþ2; aiþ3g
on the unit sphere that the vector ai þ aiþ3 is

parallel to the vector aiþ1 þ aiþ2. In the latter case

we have that

0 ¼ fðai þ aiþ3Þ � ðaiþ1 þ aiþ2Þg � aiþ2

¼ ðai � aiþ1Þ � aiþ2 þ ðaiþ3 � aiþ1Þ � aiþ2

¼ ðai � aiþ1Þ � aiþ2 þ ðaiþ1 � aiþ2Þ � aiþ3:

Hence, the signs of fsin �iþ1g alternate with respect

to the subscript i, and the polygon P is of crown

type. In fact, each of fA1; A3; � � � ; An�1g and

fA2; A4; � � � ; Ang forms equilateral and equiangular

planar polygon by the formulas (12), (14). �

The requisite conditions in the Theorem,

described by using inner products, are equivalent

to the conditions that

when n ¼ 4; 5:

jAiAiþ1
����!j ¼ jAiþ1Aiþ2

������!j; jAiAiþ2
����!j ¼ jAiþ1Aiþ3

������!j;
when n ¼ 6; 7:

jAiAiþ1
����!j ¼ jAiþ1Aiþ2

������!j; jAiAiþ2
����!j ¼ jAiþ1Aiþ3

������!j;
jAiAiþ3
����!j ¼ jAiþ1Aiþ4

������!j;
when n � 8:

jAiAiþ1
����!j ¼ jAiþ1Aiþ2

������!j; jAiAiþ2
����!j ¼ jAiþ1Aiþ3

������!j;
jAiAiþ3
����!j ¼ jAiþ1Aiþ4

������!j; jAiAiþ4
����!j ¼ jAiþ1Aiþ5

������!j;
for i ¼ 1; 2; � � � ; n, due to the following formulas.

jAiAiþ1
����!j2 � jAiþ1Aiþ2

������!j2
¼ jaij2 � jaiþ1j2 ¼ ðai � ai � aiþ1 � aiþ1Þ;

jAiAiþ2
����!j2 � jAiþ1Aiþ3

������!j2
¼ jai þ aiþ1j2 � jaiþ1 þ aiþ2j2

¼ ðai � ai � aiþ2 � aiþ2Þ þ 2ðai � aiþ1 � aiþ1 � aiþ2Þ;

jAiAiþ3
����!j2 � jAiþ1Aiþ4

������!j2
¼ jai þ aiþ1 þ aiþ2j2 � jaiþ1 þ aiþ2 þ aiþ3j2

¼ ðai � ai � aiþ3 � aiþ3Þ þ 2ðai � aiþ1 � aiþ2 � aiþ3Þ
þ 2ðai � aiþ2 � aiþ1 � aiþ3Þ;

jAiAiþ4
����!j2 � jAiþ1Aiþ5

������!j2
¼ jai þ aiþ1 þ aiþ2 þ aiþ3j2

� jaiþ1 þ aiþ2 þ aiþ3 þ aiþ4j2

¼ ðai � ai � aiþ4 � aiþ4Þ þ 2ðai � aiþ1 � aiþ3 � aiþ4Þ
þ 2ðai � aiþ2 � aiþ2 � aiþ4Þ
þ 2ðai � aiþ3 � aiþ1 � aiþ4Þ:

4. Conclusion. The theorem given in this

paper and its proof clarify how the conditions for

sides affect the polygon to be planar from the

discrete torsion point of view. The constant value of

the inner products p0; p1; p2 determine the absolute

value of the torsion, moreover the constant inner

product p3 controls the signature of the torsion. If

the torsions have the same signature, plus or minus,

the polygonal line does not close by the Proposition

in Section 2, otherwise the signatures of the torsions

should change alternatively, if not, the torsions are

equal to zero, and in these cases, the polygon is

either of crown type or planar. However, any

polygon with odd sides does not admit the crown

type, so the polygon with odd sides satisfying the

required conditions must be planar. Especially,

when the number of the sides is less than eight,

some algebraic relations occur on the relations of

inner products ai � aj, which come from the inter-

ference among the sides stated in the proof of
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the Lemma. Hence, for example, in the van der

Waerden case, the conditions of p2, p3 are not

extrinsically required for the polygon to be planar.
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Fünfecke, Elem. Math. 25 (1970), no. 4, 73–
78.

214 D. E. BLAIR and T. KONNO [Vol. 87(A),


	c_rf1
	c_rf2
	c_rf3
	c_rf4
	c_rf5

