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Abstract: In this paper, we will give determinant formulas of zeta functions for real

abelian extensions over a rational functions field with one variable. By a class number formula,

our formula can be regard as a generalization of determinant formulas of class numbers.
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1. Introduction. Let k be a field of rational

functions over a finite field Fq with q elements. Fix a

generator T of k, and let A ¼ Fq½T � be the poly-

nomial subring of k. For a monic polynomial m 2 A,

let �m be the set of m-torsion points of the Carlitz

module (see section 2). Let Km ¼ kð�mÞ. The

function field Km is called the m-th cyclotomic

function field, which is an analogue of cyclotomic

field over Q.

Let P 2 A be a monic irreducible polynomial.

In the late 1990s, Rosen gave a determinant formula

for the relative class number of KP (cf. [Ro1]),

which is regarded as an analogue of the classical

Maillet determinant. Recently, Ahn, Bae, Choi, and

Jung generalized the Rosen’s formula to any sub-

field of cyclotomic function fields with arbitrary

conductor (cf. [A-B-J, A-C-J]).

In this paper, we will extend these formulas of

class numbers to those of zeta functions. For a global

function field M over Fq, define the zeta function by

�ðs;MÞ ¼
Y
P

1�
1

NPs
� ��1

;

where the product runs over all primes of M, and

NP is the number of elements of the residue class

field of P. By the standard facts about the zeta

function (cf. [Ro2] chapter 5), there is a polynomial

ZMðXÞ 2 Z½X� such that

�ðs;MÞ ¼
ZMðq�sÞ

ð1� q�sÞð1� q1�sÞ :ð1Þ

In the previous paper [Sh], the author con-

structed the determinant formula for ZKþmðXÞ,
where Kþm is the maximal real subfield Km. Our

goal of this paper is to generalize this result to any

real subfield of Km (see Theorem 3.1).

Let hM be the class number of M, which is the

order of the divisor class group of degree 0. Since

ZMð1Þ ¼ hM , our formula derives a class number

formula (see Corollary 3.1).

2. Preparations. In this section, we review

definitions and basic properties of cyclotomic func-

tion fields, and Dirichlet characters. For more

information, see [Ha,Ro2,Wa]. Let us denote by �kk

an algebraic closure of k. For x 2 �kk and m 2 A, we

define the following action:

m � x ¼ mð’þ �ÞðxÞ;

where ’; � are Fq-linear map defined by

’ : �kk �! �kk ðx 7! xqÞ;
� : �kk �! �kk ðx 7! TxÞ:

By the above actions, �kk becomes an A-module,

which is called the Carlitz module. Let �m be the

set of all x satisfying m � x ¼ 0. Let Km ¼ kð�mÞ.
The field Km is called the m-th cyclotomic function

field. It is well-known that Km=k is a finite Galois

extension, and its Galois group GalðKm=kÞ is

isomorphic to Gm, where Gm is the unit group of

the quotient ring A=mA. PuteKK ¼ [
m:monic

Km;

where m runs through all monic polynomials of A.

For a finite extension M over k contained in eKK, the

conductor of M is defined as the monic polynomial

m such that Km is the smallest cyclotomic function

field containing M. Let HM be the subgroup of Gm

corresponding to M. We regard F�q � Gm. We shall

call M real if F�q � HM . Otherwise, we shall call M

imaginary.
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Let P1 be the unique prime of k which cor-

responds to the valuation ord1 with ord1ðT Þ < 0.

We denote by k1 the completion of k by ord1. Then

we see that M � k1 if and only if M is real.

Next, we will give basic facts about Dirichlet

characters. For a monic polynomial m 2 A, let Xm

be the group of all primitive Dirichlet characters

modulo m. Denote by D the group of all primitive

Dirichlet characters (i.e. D ¼
S
m:monic Xm). Then,

by the same argument as in the case of number field,

we have a one-to-one correspondence between finite

subgroups of D and finite subextension of eKK=k
(cf. [Wa] chapter 3). In particular, Xm corresponds

to Km.

Let M be a real abelian extension over k with

conductor m. Let XM be the subgroup of D

corresponding to M. For � 2 XM , define an L-

function by

Lðs; �Þ ¼
Y
P

1�
�ðP Þ
NPs

� ��1

;

where P runs through all monic irreducible poly-

nomials of A. By the same argument as in the case

of number fields, we have the following decompo-

sition by L-functions:Y
P:finite

1�
1

NPs
� ��1

¼
Y
�2XM

Lðs; �Þ;

where the product of the left hand runs through

primes of M not dividing P1. Since M is real, the

prime P1 totally splits in M=k. Hence

�ðs;MÞ ¼
Y
�2XM

Lðs; �Þ
( )

ð1� q�sÞ�½M:k�:

Let �0 be the trivial character. Then we see that

Lðs; �0Þ ¼ 1=ð1� q1�sÞ. Hence, by equation (1), we

have

ZMðq�sÞð2Þ

¼
Y
�2XM

� 6¼�0

Lðs; �Þ

8>><>>:
9>>=>>;ð1� q�sÞ1�½M:k�:

We will use the above equation (2) to prove our

determinant formula.

3. Determinant formulas. Let M be a real

abelian extension over k with conductor m. Our

goal in this section is to construct a determinant

formula for ZMðXÞ. To do this, we first give some

notations.

Let HM be the subgroup of Gm corresponding

to M. Let XM be the subgroup of D corresponding

to M. For � 2 Gm, there is the unique element r� 2
A such that

r� ¼ anTn þ an�1T
n�1 þ � � � þ a0

ðn < degm; an 6¼ 0Þ;
r� � � mod m:

Then we define functions Deg and L over Gm as

Degð�Þ ¼ n; Lð�Þ ¼ an 2 F�q :

We notice that Deg is a function over Gm=F
�
q . Put

�M ¼ f� 2 HM j Lð�Þ ¼ 1g:

Then we see that HM ¼ F�q ��M . Next, we define

F�ðXÞ ¼
X

�2��M

XDegð�Þ

for � 2 Gm. Then we can easily check that F�1
ðXÞ ¼

F�2
ðXÞ if �1HM ¼ �2HM . Let NM ¼ ½M : k� � 1, and

let �0 ¼ 1; �1; . . . ; �NM
be a complete system of

representatives for Gm=HM with Lð�Þ ¼ 1. For

i; j ¼ 1; 2; . . . ; NM , put

FijðXÞ ¼ ðF�i��1
j
ðXÞ � F�iðXÞÞ=ð1�XÞ:

Define the matrix EMðXÞ by

EMðXÞ ¼ ðFijðXÞÞi;j¼1;2;...;NM
:

Then we have the following determinant formula for

zeta functions.

Theorem 3.1. In the above notations, we

have

detEMðXÞ ¼ JMðXÞZMðXÞ:

Here JMðXÞ is a polynomial defined by

JMðXÞ ¼
Y
�2XM

� 6¼�0

Y
Qjm
ð1� �ðQÞXdegQÞ;

where the second product runs through all irredu-

cible monic polynomials dividing m.

Remark 3.1. By the same argument in

Proposition 3.1 in [Sh], we have

JMðXÞ ¼
Y
Qjm

ð1�XfQ degQÞgQ

ð1�XdegQÞ

where fQ are the residue class degrees of Q in M=k,

and gQ are the numbers of primes in M over Q.

Hence we see that JMðXÞ is a polynomial of integral

coefficients.

Now we give the proof of Theorem 3.1.
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Proof. For � 2 XM , denote by f� the conductor

of �. We put ~�� ¼ � 	 ��, where �� : Gm ! Gf� is a

natural homomorphism. Then f~�� : � 2 XMg is the

character group ofGm=HM . For � 2 XM , we see that

Lðs; ~��Þ ¼ Lðs; �Þ �
Y
Qjm
ð1� �ðQÞq�s degQÞ:

Hence we use equation (2) to obtainY
�2XM

� 6¼�0

Lðs; ~��Þ ¼ ZMðq�sÞJMðq�sÞð1� q�sÞNM :ð3Þ

Let � 2 XM be a non-trivial character. Then we see

that

Lðs; ~��Þ ¼
X
�2Gm

Lð�Þ¼1

~��ð�Þq�Degð�Þs:

(cf. [Ro2] chapter 4). Noting that ~�� is a character of

Gm=HM , we have

Lðs; ~��Þ ¼
XNM

i¼0

X
�2�i�M

~��ð�Þq�Degð�Þs

¼
XNM

i¼0

~��ð�iÞF�iðq�sÞ:

Fix s 2 C. We notice that F�ðq�sÞ is a function over

Gm=HM . By applying the Frobenius determinant

formula for the group Gm=HM and the function

F�ðq�sÞ, we obtainY
�2XM

� 6¼�0

Lðs; ~��Þ

¼
Y
�2XM

� 6¼�0

XNM

i¼0

~��ð�iÞF�iðq�sÞ

¼ detðF�i��1
j
ðq�sÞ � F�iðq�sÞÞi;j¼1;2;...;NM

(cf. [Wa] Lemma 5.26). By equation (3), we have

detEMðq�sÞ ¼ ZMðq�sÞJMðq�sÞ:

This completes the proof of Theorem 3.1. �

By an analytic class number formula, we have

ZMð1Þ ¼ hM . Hence our formula leads the following

class number formula.

Corollary 3.1. In the above notations, we

have

det
X

�2�i�M

Degð�Þ �
X

�2�i��1
j �M

Degð�Þ

0@ 1A
i;j¼1;2;...;NM

¼ hMRM;

where RM is the integer defined by

RM ¼

Y
Qjm

fQ if gQ ¼ 1 for every prime Q

dividing m;

0 otherwise;

8>>>>><>>>>>:
where fQ is the residue class degree of Q in M=k,

and gQ is the number of primes in M over Q.

Remark 3.2. The above class number

formula was first given by Ahn, Bae, and Jung

(cf. [A-B-J] Proposition 3.3).

Example 3.1. Let q ¼ 3, m ¼ T 3. Put

H ¼ f1; T þ 1; T 2 þ 2T þ 1g � F�3 
 Gm:

Let M be the intermediate field of Km=k corre-

sponding to H. Then we see that �M ¼ f1; T þ 1;
T 2 þ 2T þ 1g. Put

�0 ¼ 1; �1 ¼ T þ 2; �2 ¼ T 2 þ T þ 1:

Then we have

EMðXÞ ¼
1þX �X

X 1þ 2X

� �
; JMðXÞ ¼ 1:

By applying Theorem 3.1, we have ZMðXÞ ¼
detEMðXÞ ¼ 1þ 3X þ 3X2. The class number hM
is ZMð1Þ ¼ 7.
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