64 Proc. Japan Acad., 86, Ser. A (2010)

[Vol. 86(A),

The integral cohomology ring of Esg/T

By Masaki NAKAGAWA

Department of General Education, Kagawa National College of Technology, 355 chokushi-cho,
Takamatsu, Kagawa 761-8058, Japan

(Communicated by Kenji FUKAYA, M.J.A., Feb. 12, 2010)

Abstract:

We give a complete description of the integral cohomology ring of the flag mani-

fold Es/T, where Eg denotes the compact exceptional Lie group of rank 8 and T its maximal torus,
by the method due to Borel and Toda. This completes the computation of the integral cohomology
rings of the flag manifolds for all compact connected simple Lie groups.
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1. Introduction. Let G be a compact con-
nected Lie group and T a maximal torus of G. Then
the homogeneous space G/T is called a (full or com-
plete) flag manifold and plays an important role in
modern mathematics. In algebraic topology, the fol-
lowing problem is classical:

Problem 1.1. Determine the integral coho-
mology ring of the flag manifold G/ T for G a com-
pact connected simple Lie group.

The computation of the integral cohomology
ring of G/T was started by Borel in 1953 [2]. Borel
considered the spectral sequence for the fibration

G/T - BT % BG,

where BT (resp. BG) denotes the classifying space of
T (resp. G), and obtained the following description
of the cohomology ring of G/T; Let k be a field of
characteristic p, and suppose that p = 0 or G has no
p-torsion. The Weyl group W of G acts naturally on
T, and hence, on BT and also on H*(BT}; k). Then
the homomorphism

J H(BT; k) — H(G/T; k)
induces the following isomorphism:

(L1)  H'(BT;k)/(H* (BT;k)"™) — H'(G/T: ),
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DA Bott-Samelson K-cycle is refered to as a Bott tower in
toric topology, and a Bott-Samelson-Demazure-Hansen variety in
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*2) The results for SO(2n), SO(2n + 1) also appeared in [16]
by computing the ‘“‘cohomology ring of the root system” due to
Demazure [10].
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where (HT(BT;k)") denotes the ideal of H* (BT} k)
generated by W-invariant polynomials of positive
degrees. This is the Borel presentation of the coho-
mology ring of G/T. Borel’s method is valid for the
integer coefficients when G has no torsion. From
this, the cases of SU(n) and Sp(n) follow immedi-
ately. However, when G has p-torsion, Borel’s result
does not hold. In 1955, Bott and Samelson developed
an algorithm for computing the integral cohomology
ring of G/T by means of the so-called ‘“‘Bott-Samel-
son K-cycle’”™D, and determined the case of the ex-
ceptional group Go explicitly [5, 6, Theorem III’].
The above problem could be solved theoretically by
their method. However, it seems difficult to apply
this to other exceptional goups Fjy, Fg, E; and FEg.
In 1975, Toda gave another useful description of the
integral cohomology ring of G/T from the known re-
sults on the mod p cohomology rings H*(G; Z/pZ) of
G for all primes p and the rational cohomology ring
H*(G/T;Q) of G/T [20, Theorem 2.1, Proposition
3.2]. Based on Toda’s method, the cases of SO(2n),
SO(2n + 1) were settled by Toda and Watanabe
[21, Theorem 2.1, Corollary 2.2]."? The cases of Fj
and Eg were also settled in [21, Theorems A, BJ.
The case of E; was settled by the author [18, Theo-
rem 5.9]. The only remaining case is G = Fg. In this
article, we determine the integral cohomology ring of
E3/T explicitly along the line of Toda’s method.™
This completes the computation of the integral coho-
mology rings of the flag manifolds for all compact
connected simple Lie groups.

2. Ring of invariants of W(Es). Let Eg be
the compact simply connected simple exceptional
Lie group of rank 8 and 7" a maximal torus. Follow-



No. 3]

ing [7], we take the simple roots {a;}, .5 and denote
by {w;}, ;s the corresponding fundamental weights.
In topology, it is customary that roots and weights
are regarded as elements of H?(BT;Z). Let s; (1 <
i < 8) denote the simple reflection corresponding to
the simple root «;. Then the Weyl group W(Es) of
Es is generated by simple reflections s; (1 <1i < 8).
As in [19, §2], we put

ts =ws, ti = sit1(tin) 2 <0< 7),
(2.1)

tl = Sl(tg), t= ws.
Then we have

H*(BT;Z) =1Z[ty, . .

for ¢; = e(ty,...,ts), the i-th elementary symmetric
polynomial in ¢y, ..., ts.

According to Chevalley [8], the ring of inva-
riants of the Weyl group W (Ejg) over Q is generated
by 8 algebraically independent polynomials (basic in-
variants) of degrees 2, 8,12, 14, 18, 20, 24, 30. By com-
puting the Chern character of the adjoint representa-
tion of FEg, of dimension 248, we obtain the basic
invariants I; (j = 2,8,12,14, 18,20, 24, 30) explicitly
in [19, Lemma 2.3] (see also [17, 2.3]). Thus we have
the following

Lemma 2.1. The ring of invariants of the
Weyl group W (Eg) over Q is given by

H*(BT; Q)W(Eg) = Q[ Is, Ia, I14, Ig, I, Ioa, I3o).

By (1.1) and Lemma 2.1, we can compute the
rational cohomology ring H*(Es/T; Q) of Es/T.

3. Integral cohomology ring of Es/T. As
mentioned in the introduction, we compute
H*(Eg/T;Z) following Toda’s method. Since Fj is
simply connected, the homomorphism

' H*(BT;Z) — H*(Eg/T;Z)

s, t]/(c1 — 3t)

is an isomorphism. Under this isomorphism, we de-
note the (*-images of ¢; and ¢ by the same symbols.
Thus H?(Es/T;Z) is a free Z-module generated by
ti (1 <i<8) and t with a relation ¢; = 3t. In [20],
Toda gave the general description of the integral
cohomology ring of Eg/T. In our situation, his result
is stated as follows:
Proposition 3.1 [20, Proposition 3.2].

integral cohomology ring of Es/ T is of the form:

H'(Es/T;Z)
Z[tlv .. -7t87t>’73>’Y47’757’767’797710a’)’15]

( P15 P25 P35 P45 P55 P65 P85 P95 L105 P125 P145 P15 )
P18, P20, P24 P30 ’

The
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where t,...,ts,t € H> are as above, and ;€
H* (i=3,4,5,6,9,10,15), and

p1 =c1 — 3t,
pi =0; — 2y (i=3,5,9,15),
pi = 6i — 3vi (i =4,10),
pe = 06 — 56.
Here 6; (i =3,4,5,6,9,10,15) are arbitrary elements
of H*(Es/ T; Z) satisfying
83 = S¢*(pa), 65 = Sq'(83), 6 = S (85),
&15 = Sq'(ps) mod 2,
61 =P (p2), 610 = P*(64) mod 3,
6 = P'(p2) mod 5.

Other relations p; (j = 2,8,12,14,18,20, 24, 30) are
determined by the mazimum of the integers n; in
(3.1) n;-pj = (I;) mod (pisi < j),

where I; (j =2,8,12,14, 18,20, 24,30) are the basic
invariants of the Weyl group W (Eg) given in Lemma
2.1.

We will carry out his program for Eg. Fortu-
nately, in [19, Lemma 4.2], partial computation of
H*(Es/T;Z) has been made up to degrees 36. Thus
we need only to determine the higher relations pay,
poq and p3g explicitly. However, it seems difficult to
compute them directly from the basic invariants I,
Iy and I3y. We will make use of a certain subgroup
of Es. Namely, let C' be the centralizer of a one
dimensional torus determined by a; = 0 (i # 8). The
local type of C' can be read off from the Dynkin dia-
gram of Eg [3], and we have, in fact,

C=T"E; and T'NE;~Z7/2Z,

where T' denotes a certain one-dimensional torus.
Consider the fibration

BT = C)T - Ey)T -2 Ey/C,
where T’ is a maximal torus of FE;. Since
H*(Es/C;Z) and H*(E;/T';Z) have no torsion and
vanishing odd dimensional part by Bott [4, Theorem
A], the Serre spectral sequence with integer coef-
ficients for the above fibration collapses, and the
following sequence

Z — H'(Es/C;Z) 2 H*(Ey/T;Z)

L HNCTZ) = H (BT, Z) — 7
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is co-exact. In particular, p* is a split monomor-
phism so that H*(Es/T;Z) contains H*(Es/C;Z)
as a direct summand if we identify Im p* with
H*(Es/C;Z).

The integral cohomology ring of Fg/C' is deter-
mined in [19], which we now recall:

Theorem 3.2 [19, Theorem 4.7].  The integral
cohomology ring of Es/C is given as follows:

H*(Es/C;Z) = Zlu,v,w, ]/ (115,720,724, 730),

where degu = 2, degv =12, degw = 20, degz = 30
and

ri5 = ul® — 2x,

o0 = 9u® + 45uv + 120w + 60uSv* + 30utvw
+ 10u?0® + 3u?,

Toy = 110 + 60u'®v + 21w w + 105u%0? + 60ubvw
+ 60uSv?® + 9utw? + 30uvw + 5ot

r30 = —92% — 12u’v2 — 6u’wzr + Ju'tvw — 10u'?v?

— 3uw? + 30u*v*w — 35uSv* + 6utow?
— 1020w — 40° — 2u°.

Remark 3.3. The integral cohomology ring of
Es/C is also computed by Duan and Zhao [11, Theo-
rem 7] in the context of the Schubert calculus. In our
forthcoming paper [14], we will show that Theorem
3.2 completely coincides with the result of Duan and
Zhao by means of the divided difference operators due
to Bernstein-Gelfand-Gelfand [1] and Demazure [10].

The relations ro, req and rsy of H*(Es/C;Z)
correspond to the relations poy, poy and psp of
H*(Es/T;Z) respectively. In order to make the
description of H*(Fs/T;Z) complete, we have to
specify the elements u, v, w and x explicitly in the
ring H*(Es/T;Z). This has been accomplished in
[19, 4.2 and 6.1]. Furthermore, since H*(Es/C;Z) is
a direct summand of H*(FEs/T;Z), the elements 79,
ro4 and r3g are not divisible by any integer in the ring
H*(Es/T;Z). Therefore we can replace py, p2s and
P30 With rog, 794 and 73y respectively. Summing up
the results so far, we obtain the following main result
of this article:

Theorem 3.4. The integral cohomology ring
of Es/ T is given as follows:
H*(Bs/T;Z)
Zlty, ... ts,t, 93,74, 75, 65 79, Y105 V15)

( P15 P25 P35 Py P55 P65 P85 P95 P10, P12, P14 P15 )
P185 205 P245 P30 7

[Vol. 86(A),

where ti,...,t3,t € H? are as in §2, v; € H* (i =
3,4,5,6,9,10,15). The relations are

p1=c — 3,
P2 = C2 _4t27
p3 = c3 — 273,

p1 = 4 + 21 — 34,
ps = c5 — 3ty + 223 — 25,
ps = ¢ — 273 — ts + P — 2t° — 5,
ps = —3cs + 373 — 2737 + (27 — 69374)
+12(272 — 5y6) + 335 + Aty — 6673 + 15,
py = 2¢q73 + tes + ther — 3tPeg — 27,
P10 = ’Yf — 2c77y3 — tPes + 3t3er — 3o,
p12 = 1575 + 2937475 — 2¢75 + 295 + 109376 — 3csya — 273
+ t(esys — 29375 + derys + 67373)
+ t*(3710 — 2574796 — ¢773 — 1693574)
+ £%(25737 — 37475 + 1073)
+t*(3cs + 3375 + 577)
+15(=3cr — 5y3ys) + 4097 — TSy + 4t ys,
P = ¢ — 3esys + 674710 — 4esy; + 6erysya — 67373
— 12937 — 2737576
+ (24737176 — 8erv; — Berys + desys — 673710
+12937)
+ 1 (—2y37475 + 673 + 27376 + 207G — 45 — ¢rs)
+ 3 (12937 + 8esys — Serua + 375%)
+ (3710 — 267476 + 6crys — 4v374)
+ 7 (249376 + 37475 + 1293) + 18(—6cs + 292)
— 4ty +1%(675 — 6v3) — 6ty + 12ty — 2¢1,
p1s = (cs — t2cg + 2t35 + 3thyy — ) (7 — 3tes)
—2(73 + c6) (90 — c673) — 27155
p1s =75 — 9esy10 — 673710 — 47370 — 10737670
+ 29375710 — 27374576 — 67373 + 3c8VaY6
+ csV3va + 67375 + 129376 + 2va + 2e3 %
— 298745 + 2077576 + 475 — 1078 + 187376
+ 159375 — 9cress
+ H(—2737579 — 24cryavs + 8csays + dervi
+ deryio — cso + 26573 + desvave + 12937am0
— 3673717 + 1273757 + cs73 + 67375 — 187377)
+ t2(247374 — 265 — erv0 — 1195710 + 293470
— 2e3735 + 16¢77376 — 3eryays + Ty — 674
— 9cs7; + 81731476 — 1396710 + 41375795 — €773)
+ 3 (=375710 — 1507375 — 1357376 + 67370
— 2e7y375 + 21er + 15eres + 371757 — 37377
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+ 1837 + 157679 + 14csy37s — 3073)
+ t1(=13cs76 + 27470 — 565 — 339377 + 37570

— 28y375%6 — 457776 — 4lerysva — 139575 — 9esv3)

+t°(3ervs — 67375 + 23¢773 + 105937476 — Besys
— 3 + 4573)
+ t5(11} — dysy0 + derys + 935 + 1273
+ 667276 + 7592 + 2c574)
+17(=33y37; + 129575 + 15757%)
+ % (—4y10 + 2193 — Berys — 3%)
+ (679 — 4275 — 99737%6)
+1%(—4cg — 67; — 137375)
+ 1 (37 + 2Ty3m) + (6076 + 1873)
+ 6135 — 9ty — 126545 + 1088,
P20 = 9u? + 450y + 120w + 60u0? + 30utvw
+ 10u?0® + 3w? ,
pas = 116! + 60u'Sv + 21w w + 105u20? + 60utvw
+ 60u5v® + 9utw? + 3000 w + 5ot
P30 = —922 — 12u°vx — 6wz + 9uMtow — 106203
— 3ul%w? 4 30ubv*w — 35ulv? + 6utvw?
— 10u*0*w — 40° — 207,
where
u = tg,
v =2y + 75 — uys + ya(—t* + u?) — Py + 10 — th?
+ 8303 + 2t — tu57
w = Y10+ wyy — uler — uyays + 20 — 2uPysys
+ 3ya(—6tu? 4 2u®) + 42 (2620 + 2tu® — 2ut)
+ 6 (=5t + 5tu’) + v5(tu + 3t3u? + t2ud)
+ (6t u? — 3t3u® — 2870t — td + uP)
+ (=6t — 2t1® 4 483ut 4 61705 — 4tu® 4 u")
+ 4t — 66°u® + 2t + P — b,
z =15 — 207375 + 3737 — 237376 — 675 + 4670
+ 3uramio — uysYe — 3urayi + ducrysvs — 6urie
+ (—3t + 2u)y37s + (=4t + du) 37576
+ (= — u)yay9 + (£ + tu — u?)erys
(9¢% + 12tu + 5u®)y37%6
(5¢% + 6tu + 2u®)yiyy + (3t% + dtu + u?)erye
(-6t — 2t2u — 6tu? + 5u)ys — uP 3y
(3t%u + )3 + (2t%u + 3tu®)erys
(—45t% + 10t*u — 40tu®)v2
(t* = 28%u + tu® — )35
(=33¢% + t*u — 31tu® + 13u*) 376
(-

+
+
+
+
+
+
+
+ (=2t* — 4t3u — 3tud + 3ut)ery

(—9t* — 6t3u — 18t%u* + 5tu® — 3ut)ys76
(=3t* — 3t°u — T*u® + 5tu’ — dut)yivs
(—t* — 6t°u — t*u® — 3tu®)y3v;
(—3t'u t3u2 + 3t%u® + 15tu) 10
(=3t*u + t3u?® + 5t%u® 4 10tu* — u®)erys
(15¢° — 2t*u + 3t3u® + 14¢°u® — 16tu’ + 3u)y2v
(39> — 13t*u + 8t3u? + 35¢%u® — 31tu* — 3u®) s
(t® — t'? — 3 — Put — t® — 1)y
+ (1385 + 1285u + 5t*u? — 56t30° + 8t2ut + 21t°
+ 2u%)y376
+ (615 + 3% 4 2t u? + 7303 + Pt — 8tu® 4 3u®) vy
+ (—8t% 4 685w + 2t*? — 226303 + 612t + Stud
—2u°)7;
+ (=617 + t5u — 7tu® + 563Ut + 3t%u° + 3tu’ — 63u”)?
+ (=7 + 2% + Pu? — 11843 + 663u* 4 5t%ud + 6tu®
+ 39" )35
+ (28 4 6t7u 4 3t%u? — 4% — 15¢1ut 4 61300
+ 3t%u® — 40tu” + 59u8) ¢y
+ (388 4+ t9u? 4+ 1165 + 14t — 2083u° — 44748
+ 118tu” + 3u®) 34
+ (=48t + 3t%u — 41¢7u? + 18t%3 + 16t°u*
— 13t%® — 67t3uS + 125870 — 15tu® — 291u%)ys
+ (=187 — 3t%u — 16t7u? + 10653 — 4t5u* — 8tt®
—16t°u® — 23t*u” — 10tu® — 115u")72
+ (=6t — 3t%u — 9t*u? + 5t — 5t5ut — 14¢uS
—5263u” + 6t2u8 — 60tu’ 4 117u'%)s
+ (1881 — 3t"0u + 5% + 116503 — 287wt + 8t%u°
+ 206°u8 — 64t*u” — 15¢°u® 4 54t%u° 4+ 178tu!”
— 177u)yy
+ (=262 + 6t 1w + 26102 — 206%° + 1165u*
+ 22670’ — 8% + 83t°u” + 15t*u® + 5t°u°
— 116826 + ! + 117u12)’y3
— 12t — "y — 10630 + 6t + Tt ! — 138100
—316%5 + 93" — t"u® — 118¢54° — 18¢°u!0
+ 13110t — 663u? — 233%™ + 175t — 58ul.

o+ 4+ + + o+t

4. Concluding remarks. The flag manifold
G/T also appears as G¢/B, where G¢ denotes the
complexification of G and B a Borel subgroup of G¢
containing T¢, the complexification of T. The sub-
group B acts on G¢/B by the left translation. Each
element w € W defines an element e, := wB in G¢/B,
and the B-orbit X := B- e, of e, under this action
is isomorphic to an affine space, and is called a Schu-
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bert cell corresponding to w. Then it was shown by
Chevalley [9] that the manifold G¢/B admits a cellu-
lar decomposition

(4.1) Go/B= [] X;.
weW

The Schubert wvariety X, corresponding to w is
defined to be the closure of the Schubert cell X,
and it determines a Schubert class in H*(Gc/B;Z).
It follows from (4.1) that the set of Schubert classes
form a Z-basis for H*(Gc/B;Z) (for details, see
[1, 9, 13]). This is the Schubert presentation of the
cohomology ring of G/T. Tt is natural to ask the
connection between the Borel and the Schubert
presentations. In [1], Bernstein, Gelfand and Gelfand
introduced the divided difference operators and gave
a general answer to the above problem. In our sit-
uation, the generators ¢; (1 <¢<38), ¢t and 7 (i =
3,4,5,6,9,10,15) in Theorem 3.4 can be expressed
as Z-linear combinations of Schubert classes indexed
by W(FEsg). The explicit forms will be given in our
forthcoming paper [15] (see also [12] for the Schubert
presentation of H*(Es/T;Z)).
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