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On the inviscid Proudman-Johnson equation

By Adrian CONSTANTIN and Marcus WUNSCH

Universit€at Wien, Fakult€at f€ur Mathematik, Nordbergstra�e 15, A-1090 Wien, Austria
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Abstract: We show that certain qualitative properties of classical solutions to the inviscid
Proudman-Johnson equation are preserved as long as these solutions exist. This enables us to give

a simple blow-up criterion.
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1. Introduction. The inviscid Proudman-

Johnson equation [12]

ftxx þ ffxxx ¼ fxfxx;
fð0; xÞ ¼ f 0ðxÞ:

�
ð1:1Þ

is obtained from the incompressible Euler equations

in two space dimensions,

ut þ ðu � rÞ u ¼ � 1

�
rp

div u ¼ 0;

8<
:ð1:2Þ

by the separation of space variables for the stream
function

 ðt; x; yÞ ¼ y fðt; xÞ;ð1:3Þ
giving the velocity vector

u ¼ ð y;� xÞ:
A major open problem in partial di�erential equa-

tions is the blow-up problem for the incompressible

Euler equation [1, 9]: can singularities arise in �nite
time from smooth initial velocities? The physical im-

portance of this problem is far greater than the blow-

up problem for the Navier-Stokes equation, despite
the prominence of the latter as a Clay Millenium

Problem [7]. Due to the fact that equation (1.1) de-

scribes solutions to the incompressible Euler equa-
tions, the blow-up issue for (1.1) with spatially peri-

odic solutions satisfying

fðt; 0Þ ¼ fðt; 1Þ and fxðt; 0Þ ¼ fxðt; 1Þð1:4Þ
at instant t, is an open problem of great current
interest. In this context notice that if instead of the

incompressible Euler equations (1.2) we consider the

incompressible Navier-Stokes equations

ut þ ðu � rÞ u ¼ � 1

�
rpþ ��u

div u ¼ 0;

8<
:

where � > 0 is the constant viscosity, the Ansatz

(1.3) yields the viscid Proudman-Johnson equation

ftxx þ ffxxx � � fxxxx ¼ fxfxx;
lacking blow-up solutions (see [3]).

The classical Beale-Kato-Majda [2, 8] blow-up

criterion for (1.2), says that the time integral of the
maximum magnitude of the vorticityZ T

0

sup
x;y
j� ðt; x; yÞj dt

controls blow-up or its absence. However, (1.3) yields

a vorticity

�� ðt; x; yÞ ¼ � y fxxðt; xÞð1:5Þ
of in�nite supremum norm for ðx; yÞ 2 ½0; 1� �R,

unless we are in the uninteresting case fxx � 0.

Our aim is to introduce a class of smooth func-
tions that is preserved by the �ow (1.1) and for

which a simple blow-up criterion can be given.

2. Blow-up scenario. For integers s � 1 we
denote by Hs the Sobolev space of square-integrable

functions F : ½0; 1� ! R with square-integrable dis-

tributional derivatives up to order s. Okamoto [10]
proved local existence in time of solutions to (1.1):

Theorem 2.1. For any f 0
x 2 H s ðs � 1Þ satis-

fying ð1:4Þ at time t ¼ 0, there exists T > 0 and a

unique solution fx 2 Cð½0;T �; H sÞ of ð1:1Þ satisfying

ð1:4Þ for all t 2 ½0;T �, with initial data f ð0; �Þ ¼ f 0.

Using (1.1) we see that if f 0
x 2 Hs with s � 2,

then the solution fx 2 C1ð½0; T �;Hs�1Þ. Notice that

the invariance of (1.1) under the transformation
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fðt; xÞ 7! �fðt;�xÞ in combination with the above

result shows that odd initial data f 0, satisfying

f 0ðxÞ ¼ �f 0ð�xÞ; x 2 R;

remain spatially odd for as long as they exist.

Particular weak solutions to (1.1) that blow up

in �nite time have been found and investigated in
Childress et al. [4] and Okamoto [10], but no smooth

blow-up solutions could be given so far in the litera-

ture. Global existence for classical solutions to (1.2),
captured in our framework if s � 2, is ensured as

long as Z 1

0

f2
xxðt; xÞ dx

does not blow-up [10]. While this criterion involves
the vorticity (1.5), being thus reminiscent of the clas-

sical Beale-Kato-Majda blow-up criterion for (1.2), it

is possible to give a simpler criterion for odd data. To
this end, let us de�ne

MðtÞ :¼ sup
x2½0;1�

ffxðt; xÞg:ð2:1Þ

Proposition 2.2. If the initial data f 0 2 H 3 is

odd, then the corresponding solution to ð1:1Þ blows up

in �nite time if and only if lim supt"T� M ðtÞ ¼ 1 for

some T � <1.

Proof. Multiplying (1.1) by fxx, an integration
by parts shows that

d

dt

Z 1

0

f2
xx dx ¼ 3

Z 1

0

fxf
2
xx dx 	 3MðtÞ

Z 1

0

f2
xx dx:

Gronwall’s inequality [9] shows now that a bound on
MðtÞ provides us with a bound on

R 1
0 f

2
xx dx. r

Let us now introduce the class F of odd func-

tions f 2 H3 with

sup
x2½0;1�

ffxðxÞg ¼ fxð0Þ:ð2:2Þ

For initial data f 0 2 F the above blow-up criterion

simpli�es. To show this we will use an abstract

lemma by Constantin and Escher [5, 6]:
Lemma 2.3. For fx 2 C1ð½0;T �; H 1Þ de�ne

the function M by ð2:1Þ. Then for every t 2 ½0;T �,
there exists at least one point �ðtÞ 2 ½0; 1� with

M ðtÞ ¼ fxðt; �ðtÞÞ, and the function M is almost

everywhere di�erentiable on ð0;TÞ with

M 0ðtÞ ¼ fxtðt; �ðtÞÞ a:e: on ð0; T Þ:
With this lemma at hand, we can give a blow-up

criterion for solutions to (1.1).

Theorem 2.4. If the initial data f 0 2 F , then

the corresponding solution to ð1:1Þ blows up in �nite

time if and only if lim supt"T� fxðt; 0Þ ¼ 1 for some

T� <1.

Proof. Integrating (1.1) once with respect to the
spatial variable, we obtain

@xðftx þ ffxx � f2
xÞ ¼ 0:

Using (1.4) we get

ftx þ ffxx ¼ f2
x � 2

Z 1

0

f2
x dx:ð2:3Þ

which, by Lemma 2.3, entails the ordinary di�eren-

tial equation

M 0ðtÞ ¼M2ðtÞ � 2

Z 1

0

f2
x dx a.e.ð2:4Þ

Since f is odd and f 0
x ð0Þ ¼Mð0Þ as f 0 2 F , denoting

cðtÞ ¼
Z 1

0

f 2
x dx;

we see that both functions MðtÞ and fxðt; 0Þ satisfy

the ordinary di�erential equation z0ðtÞ ¼ z2ðtÞ � 2cðtÞ
with identical initial data. Thus MðtÞ ¼ fxðt; 0Þ for
all times and we conclude by Proposition 2.2. r

We now introduce an interesting subfamily F�
of F by considering odd functions f 2 H3 such that
f is convex on ð�1=2; 0Þ and concave on ð0; 1=2Þ.

Notice that if f 2 F� then

Z 1=2

�1=2

fx dx ¼ 0, and fx is

even and monotone on ð�1=2; 0Þ and on ð0; 1=2Þ.
We now show the relevance of F� to (1.1).

Proposition 2.5. If f 0 2 F�, then f 2 F� as

long as the solution exists.

Proof. Let T � > 0 be the maximal existence
time of the solution to (1.1) with initial data f 0. For

t 2 ½0; T �Þ we de�ne the di�eomorphism ’ðt; �Þ of

½�1=2; 1; 2� as the solution to the system

’t ¼ fðt; ’Þ;
’ð0; xÞ ¼ x:

�
ð2:5Þ

Since fðt; 0Þ ¼ fðt;
1=2Þ ¼ 0 as f is odd and sat-

is�es (1.4), by uniqueness for the ordinary di�erential

equation z0 ¼ fðt; zÞ with initial data zð0Þ ¼ 0, re-
spectively zð0Þ ¼ 
1=2 we infer from (2.5) that

’ðt; 0Þ ¼ 0; ’ðt;
1=2Þ ¼ 
1=2;ð2:6Þ

for all t 2 ½0; T �Þ. De�ne now

�ðt; xÞ ¼ fxxðt; ’ðt; xÞÞ
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for ðt; xÞ 2 ½0; T �Þ � ½�1=2; 1=2�. Using (2.5), we infer

from (1.1) that �t ¼ fxðt; ’Þ �. Thus

fxxðt; ’ðt; xÞÞ ¼ fxxð0; xÞ e
R t

0
fxðs; ’ ðs; xÞÞ ds

for all ðt; xÞ 2 ½0; T �Þ � ½�1=2; 1=2�. Since f 0 2 F ,
the last relation in combination with (2.6) shows

that for any t 2 ð0; T �Þ the function fðt; �Þ is convex

on ð�1=2; 0Þ and concave on ð0; 1=2Þ. We already
know that fðt; �Þ has to be odd. Thus fðt; �Þ 2 F�. r

It is of interest to point out that (2.3) can be

written as

@x

�
ft þ ffx � 2

Z x

0

f2
x dxþ 2x cðtÞ

�
¼ 0:ð2:7Þ

If f 0 2 H3 is odd, fðt; �Þ is also odd so that ftðt; 0Þ ¼
fðt; 0Þ ¼ 0. Evaluating the di�erentiated expression

in (2.7) at x ¼ 0, we infer that for f 0 2 H3 odd,

ft þ ffx ¼ 2

Z x

0

f2
x dx� 2x

Z 1

0

f2
x dx:ð2:8Þ

Seeking separable solutions of (2.8) of the form

fðt; xÞ ¼ F ðxÞ
T � t

with T > 0 �xed, amounts to solving the time-
independent equation

F þ FFx ¼ 2

Z x

0

F 2
x dx� 2x

Z 1

0

F 2
x dx

and leads to the blow-up solutions from [4, 10].

Remark 2.6. Similarly one can consider the
generalized Proudman-Johnson equation introduced

in [10, 11]. Results of this type will be exhibited in a

forthcoming paper.
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