No. 7]

Proc. Japan Acad., 85, Ser. A (2009) 81

On the inviscid Proudman-Johnson equation

By Adrian CONSTANTIN and Marcus WUNSCH

Universitdt Wien, Fakultdt fiir Mathematik, Nordbergstrale 15, A-1090 Wien, Austria

(Communicated by Masaki KASHIWARA, M.J.A., June 12, 2009)

Abstract:

We show that certain qualitative properties of classical solutions to the inviscid

Proudman-Johnson equation are preserved as long as these solutions exist. This enables us to give

a simple blow-up criterion.
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1. Introduction. The inviscid Proudman-

Johnson equation [12]

2z T zrxx — JxJxzs
(1.1) { Jioa + [ . i falf.
[0, 2) = fO(x).
is obtained from the incompressible Euler equations
in two space dimensions,

1
(12) ut—|—(u~V)U——;Vp

divu =0,

by the separation of space variables for the stream
function

(1.3) U(t,z,y) =y f(t,z),
giving the velocity vector

u = (ww —¢J:)~
A major open problem in partial differential equa-
tions is the blow-up problem for the incompressible
Euler equation [1, 9]: can singularities arise in finite
time from smooth initial velocities? The physical im-
portance of this problem is far greater than the blow-
up problem for the Navier-Stokes equation, despite
the prominence of the latter as a Clay Millenium
Problem [7]. Due to the fact that equation (1.1) de-
scribes solutions to the incompressible Euler equa-
tions, the blow-up issue for (1.1) with spatially peri-
odic solutions satisfying

(14) f(ta 0) = f(ta 1) and fl‘(t7 O) = fz(ta 1)
at instant ¢, is an open problem of great current

interest. In this context notice that if instead of the
incompressible Euler equations (1.2) we consider the
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Proudman-Johnson equation; blow-up.

incompressible Navier-Stokes equations

1
uf,+(u-V)u:—;Vp+yAu
divu =0,

where v > 0 is the constant viscosity, the Ansatz
(1.3) yields the viscid Proudman-Johnson equation

fth: + f‘f.’l‘wﬂf -V f.]?.’Z‘Z.T = foCU.’Z‘?
lacking blow-up solutions (see [3]).
The classical Beale-Kato-Majda [2, 8] blow-up
criterion for (1.2), says that the time integral of the
maximum magnitude of the vorticity

T
/ sup |AyY(t, z,y)|dt
0

X

controls blow-up or its absence. However, (1.3) yields
a vorticity

(1.5) =AYtz y) = —y fru(t, @)

of infinite supremum norm for (z,y) € [0,1] x R,
unless we are in the uninteresting case f,, = 0.

Our aim is to introduce a class of smooth func-
tions that is preserved by the flow (1.1) and for
which a simple blow-up criterion can be given.

2. Blow-up scenario. For integers s > 1 we
denote by H*® the Sobolev space of square-integrable
functions F:[0,1] — R with square-integrable dis-
tributional derivatives up to order s. Okamoto [10]
proved local existence in time of solutions to (1.1):

Theorem 2.1. For any f” € H® (s > 1) satis-
fying (1.4) at time t =0, there exists T >0 and a
unique solution f, € C([0, T]; H®) of (1.1) satisfying
(1.4) for all t € [0, T], with initial data £(0,-) = f°.

Using (1.1) we see that if f0 € H® with s> 2,
then the solution f, € C'([0,T]; H*~'). Notice that
the invariance of (1.1) under the transformation



82 A. CONSTANTIN and M. WUNSCH

f(t,x) — — f(t,—z) in combination with the above
result shows that odd initial data f°, satisfying

f(z) = —f(~u),

remain spatially odd for as long as they exist.

Particular weak solutions to (1.1) that blow up
in finite time have been found and investigated in
Childress et al. [4] and Okamoto [10], but no smooth
blow-up solutions could be given so far in the litera-
ture. Global existence for classical solutions to (1.2),
captured in our framework if s > 2, is ensured as
long as

r €R,

/ () de
0

does not blow-up [10]. While this criterion involves
the vorticity (1.5), being thus reminiscent of the clas-
sical Beale-Kato-Majda blow-up criterion for (1.2), it
is possible to give a simpler criterion for odd data. To
this end, let us define

(2.1) M(t) == sup {fo(t,x)}.

z€(0,1]

Proposition 2.2. If the initial data f° € H? is
odd, then the corresponding solution to (1.1) blows up
in finite time if and only if limsupy . M(t) = oo for
some T% < 0.

Proof. Multiplying (1.1) by f,., an integration
by parts shows that

d 1 1 1
7 /0 f2dr=3 /0 fof? dz < 3M(t) /0 12, dx.

Gronwall’s inequality [9] shows now that a bound on
M(t) provides us with a bound on [; f, dz. O

Let us now introduce the class F of odd func-
tions f € H® with

z€(0,1]

For initial data f° € F the above blow-up criterion
simplifies. To show this we will use an abstract
lemma by Constantin and Escher [5, 6]:

Lemma 2.3. For f, € C'([0, T]; H") define
the function M by (2.1). Then for every t € [0, T),
there exists at least one point £(t) € [0,1] with
M(t) = f.(t,&(¢)), and the function M is almost
everywhere differentiable on (0, T') with

M'(t) = fu(t,&(1)) a.e.on (0,T).

With this lemma at hand, we can give a blow-up
criterion for solutions to (1.1).
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Theorem 2.4. If the initial data f° € F, then
the corresponding solution to (1.1) blows up in finite
time if and only if limsupy p- fo(t,0) = oo for some
T < o0.

Proof. Integrating (1.1) once with respect to the
spatial variable, we obtain

Using (1.4) we get

1
(2.3) fio + ffox = f2 — 2/ f2 da.

0
which, by Lemma 2.3, entails the ordinary differen-
tial equation

(2.4) M’(t):MQ(t)—2/O f2dr  ae.

Since f is odd and f(0) = M(0) as f° € F, denoting

(t) = / 2 de,

we see that both functions M(t) and f,(¢,0) satisty
the ordinary differential equation 2/(t) = 22(t) — 2¢(t)
with identical initial data. Thus M(t) = f,(¢,0) for
all times and we conclude by Proposition 2.2. O

We now introduce an interesting subfamily F*
of F by considering odd functions f € H? such that
f is convex on (—1/2,0) and concave on (0,1/2).

1/2

Notice that if f € F* then fedx =0, and f, is
~1/2

even and monotone on (—1/2,0) and on (0,1/2).
We now show the relevance of F* to (1.1).

Proposition 2.5. If f' € F*, then f € F* as
long as the solution exists.

Proof. Let T* >0 be the maximal existence
time of the solution to (1.1) with initial data f°. For
t €[0,7%) we define the diffecomorphism ¢(¢,) of
[—1/2,1,2] as the solution to the system

Pt = f(tv 50)7
25 { 0(0,z) = z.

Since f(t,0) = f(¢,£1/2) =0 as f is odd and sat-
isfies (1.4), by uniqueness for the ordinary differential
equation 7 = f(¢,z) with initial data 2(0) =0, re-
spectively z(0) = £1/2 we infer from (2.5) that

(2.6) o(t,0) =0, o(t, +1/2) = £1/2,
for all ¢ € [0, T*). Define now
0(t, ) = fiu(t, o(t, 7))
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for (¢t,z) € [0,T*) x [-1/2,1/2]. Using (2.5), we infer
from (1.1) that 6; = f,(¢,¢) 6. Thus

Ferlty p(t,2)) = fur 0, 2) o Fo 0

for all (t,z)€[0,7%) x [-1/2,1/2]. Since f°¢€ F,
the last relation in combination with (2.6) shows
that for any t € (0,7*) the function f(t,-) is convex
on (—1/2,0) and concave on (0,1/2). We already
know that f(¢,-) has to be odd. Thus f(t¢,-) € F*. O

It is of interest to point out that (2.3) can be
written as

27 8, (ft +ff—2 /0 Fdu + 2z c(t)) —0.

If ¢ H?is odd, f(t,-) is also odd so that f;(¢,0) =
f(t,0) = 0. Evaluating the differentiated expression
in (2.7) at z = 0, we infer that for f* € H? odd,

x 1
@8  ferfh=2 fde-2 [ fan

Seeking separable solutions of (2.8) of the form

F(z)
Tt

f(tvx) =

with 7> 0 fixed, amounts to solving the time-
independent equation

T 1
F+FFZ:2/ Efdx—2x/ F2dx
0 0

and leads to the blow-up solutions from [4, 10].

Remark 2.6. Similarly one can consider the
generalized Proudman-Johnson equation introduced
in [10, 11]. Results of this type will be exhibited in a
forthcoming paper.
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