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1. Introduction. A theorem of Legendrian

dualities for pseudo-spheres in Minkowski space

has been shown by the second author in [8] which

is now a fundamental tool for the study of

extrinsic differential geometry on submanifolds in

these pseudo-spheres from the view point of

Singularity theory (cf., [8,11,12]). In this paper

we consider similar Legedrian dualities between

pseudo-spheres in general semi-Euclidean space.

The main results (cf., Theorems 3.1 and 3.2) are

simple generalizations of the previous results in

[8,10]. However, there are some new applications

and information.

The Lorentzian space form with negative sec-

tional curvature is called Anti de Sitter space which

is given as a pseudo-sphere with a negative radius in

semi-Euclidean space with index 2. This space is a

very important subject in Physics (the theory of

general relativity, the string theory and the brane

world scenario etc. [19–21]). We can apply the

Legendrian duality theorem to this space and

obtain some new geometric properties of submani-

folds. The detailed arguments on this application

will be appeared in elsewhere.

Recently there appeared several results on

submanifolds in hyperbolic space and de Sitter

space which are pseudo-spheres in Minkowski space

[1,6,7,17,18]. We give an interesting interpretation

on the set of Legendrian dualities from a new point

of view (i.e., a mandala of Legendrian dualities in

§3). We can add some new information on the above

results from this point of view.

2. Basic notions. In this section we pre-

pare basic notions on semi-Euclidean space. Let

Rnþ1 ¼ fðx1; . . . ; xnþ1Þ j xi 2 R; i ¼ 1; . . . ; nþ 1g be

an ðnþ 1Þ-dimensional vector space. For any vec-

tors x ¼ ðx1; . . . ; xnþ1Þ, y ¼ ðy1; . . . ; ynþ1Þ in Rnþ1;

the pseudo scalar product of x and y is defined

by hx;yi ¼ �
Pr

i¼1 xiyi þ
Pnþ1

i¼rþ1 xiyi. The space

ðRnþ1; h; iÞ is called semi-Euclidean ðnþ 1Þ-space
with index r and denoted by Rnþ1

r . We say that a

vector x in Rnþ1
r n f0g is spacelike, null or timelike if

hx;xi > 0;¼ 0 or < 0 respectively. The norm of the

vector x 2 Rnþ1
r is defined by kxk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhx;xij

p
. We

have the following three kinds of pseudo-spheres in

Rnþ1
r : The pseudohyperbolic n-space with idex r� 1

is defined by

Hn
r�1 ¼ fx 2 Rnþ1

r j hx;xi ¼ �1g;

the pseudo n-sphere with idex r by

Sn
r ¼ fx 2 Rnþ1

r j hx;xi ¼ 1g

and the (open) nullcone by

�n ¼ fx 2 Rnþ1
r n f0g j hx;xi ¼ 0g:

In relativity theory Rnþ1
1 is called Minkoski ðnþ 1Þ-

space, Sn
1 is de Sitter n-space and Hn

1 is Anti de

Sitter n-space which is denoted by AdSn. These are

the Lorentzian space forms. Moreover, Hn
0 is called

hyperbolic n-space and Sn
0 is the Euclidean unit

sphere which are the Riemannian space forms.

3. Legendrian dualities. We now review

some properties of contact manifolds and Legen-

drian submanifolds. Let N be a ð2nþ 1Þ-dimen-

sional smooth manifold and K be a tangent hyper-

plane field on N. Locally such a field is defined as
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the field of zeros of a 1-form �. The tangent

hyperplane field K is non-degenerate if � ^ ðd�Þn 6¼
0 at any point of N . We say that ðN;KÞ is a contact

manifold if K is a non-degenerate hyperplane field.

In this case K is called a contact structure and � is a

contact form. Let � : N �! N 0 be a diffeomorphism

between contact manifolds ðN;KÞ and ðN 0; K0Þ: We

say that � is a contact diffeomorphism if d�ðKÞ ¼
K0. Two contact manifolds ðN;KÞ and ðN 0; K0Þ are
contact diffeomorphic if there exists a contact

diffeomorphism � : N �! N 0. A submanifold i : L �
N of a contact manifold ðN;KÞ is said to be

Legendrian if dim L ¼ n and dixðTxLÞ � KiðxÞ at

any x 2 L. We say that a smooth fiber bundle � :
E �! M is called a Legendrian fibration if its total

space E is furnished with a contact structure and its

fibers are Legendrian submanifolds. Let � : E �!
M be a Legendrian fibration. For a Legendrian

submanifold i : L � E, � � i : L �! M is called a

Legendrian map. The image of the Legendrian map

� � i is called a wavefront set of i which is denoted

by W ðLÞ. For any p 2 E, it is known that there is a

local coordinate system ðx1; . . . ; xm; p1; . . . ; pm; zÞ
around p such that

�ðx1; . . . ; xm; p1; . . . ; pm; zÞ ¼ ðx1; . . . ; xm; zÞ

and the contact structure is given by the 1-form

� ¼ dz�
Xm
i¼1

pidxi

(cf. [2], 20.3).

In [8] we have shown the basic duality theorem

which is the fundamental tool for the study of

spacelike hypersurfaces in Minkowski pseudo-

spheres. In this paper we consider the similar

dualities in semi-Euclidean space. We now consider

the following four double fibrations:

(1) (a) Hn
r�1 � Sn

r � �1 ¼ fðv;wÞ j hv;wi ¼ 0g,
(b) �11 : �1 �! Hn

r�1, �12 : �1 �! Sn
r ,

(c) �11 ¼ hdv;wij�1, �12 ¼ hv; dwij�1.

(2) (a) Hn
r�1 � �n � �2 ¼ fðv;wÞ j hv;wi ¼ �1g,

(b) �21 : �2 �! Hn
r�1, �22 : �2 �! �n,

(c) �21 ¼ hdv;wij�2, �22 ¼ hv; dwij�2.

(3) (a) �n � Sn
r � �3 ¼ fðv;wÞ j hv;wi ¼ 1g,

(b) �31 : �3 �! �n, �32 : �3 �! Sn
r ,

(c) �31 ¼ hdv;wij�3, �32 ¼ hv; dwij�3.

(4) (a) �n � �n � �4 ¼ fðv;wÞ j hv;wi ¼ �2g,
(b) �41 : �4 �! �n, �42 : �4 �! �n,

(c) �41 ¼ hdv;wij�4, �42 ¼ hv; dwij�4.

Here, �i1ðv;wÞ ¼ v, �i2ðv;wÞ ¼ w, hdv;wi ¼

�w0dv0 þ
Pn

i¼1 widvi and hv; dwi ¼ �v0dw0 þPn
i¼1 vidwi are one-forms on Rnþ1

r �Rnþ1
r .

We remark that ��1
i1 ð0Þ and ��1

i2 ð0Þ define the

same tangent hyperplane field over �i which is

denoted by Ki. The basic duality theorem is the

following theorem:

Theorem 3.1. Under the same notations as

the previous paragraph, each ð�i; KiÞ ði ¼ 1; 2; 3; 4Þ
is a contact manifold and both of �ij ðj ¼ 1; 2Þ are

Legendrian fibrations. Moreover those contact

manifolds are contact diffeomorphic each other.

Before we give the proof, we include here a

quick review on the canonical contact structure on

the projective cotangent bundle over a manifold.

Let � : PT �ðMÞ ! M be the projective cotangent

bundle over an n-dimensional manifold M. This

fibration can be considered as a Legendrian fibra-

tion with the canonical contact structure K on

PT �ðMÞ. We now review geometric properties

of this space. Consider the tangent bundle � :
TPT �ðMÞ ! PT �ðMÞ and the differential map d� :

TPT �ðMÞ ! N of �. For any X 2 TPT �ðMÞ, there
exists an element � 2 T �ðMÞ such that �ðXÞ ¼ ½��.
For an element V 2 TxðMÞ, the property �ðV Þ ¼ 0

does not depend on the choice of representative of

the class ½��. Thus we can define the canonical

contact structure on PT �ðMÞ by

K ¼ fX 2 TPT �ðMÞ j �ðXÞðd�ðXÞÞ ¼ 0g:

For a local coordinate neighborhood ðU; ðx1; . . . ;

xnÞÞ on M, we have a trivialization PT �ðUÞ ¼�
U � P ðRn�1Þ� and we call ððx1; . . . ; xnÞ; ½�1 : 	 	 	 : �n�Þ
homogeneous coordinates, where ½�1 : 	 	 	 : �n� are

homogeneous coordinates of the dual projective

space P ðRn�1Þ�. It is easy to show that X 2 Kðx;½��Þ
if and only if

Pn
i¼1 �i�i ¼ 0, where d�ðXÞ ¼Pn

i¼1 �i
@
@xi

. This means that the contact form �

on the affine coordinates Uj ¼ fðx; ½��Þ j �j 6¼ 0g �
PT �ðUÞ is given by � ¼

Pn
i¼1ð�i=�jÞdxi.

Proof. By definition we can easily show that

each �i ði ¼ 1; 2; 3; 4Þ is a smooth submanifold in

Rnþ1
r �Rnþ1

r and each �ij ði ¼ 1; 2; 3; 4; j ¼ 1; 2Þ is a
smooth fibration. It also follows from the definition

of �ij that each fibre of �ij is an integral submanifold

of Ki ði ¼ 1; 2; 3; 4Þ.
Firstly, we show that ð�1; K1Þ is a contact

manifold. For any v ¼ ðv1; 	 	 	 ; vnþ1Þ 2 Hn
r�1, we

have
Pr

i¼1 v
2
i 6¼ 0. Therefore ðv1; . . . ; vrÞ 6¼ ð0; . . . ;

0Þ. We consider a coordinate neighborhood V þ
1 ¼

fv ¼ ðv1; . . . ; vnþ1Þ 2 Hn
r�1 j v1 > 0g on which we
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have v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
Pr

i¼2 v
2
i �

Pnþ1
i¼rþ1 v

2
i þ 1

q
. Therefore,

we regard that ðv2; 	 	 	 ; vnþ1Þ is the local coordinates
on V þ

1 . For any w ¼ ðw1; . . . ; wnþ1Þ 2 Sn
r , we havePnþ1

i¼rþ1 w
2
i 6¼ 0, so that ðwrþ1; . . . ; wnþ1Þ 6¼ ð0; . . . ; 0Þ.

We also consider a coordinate neighborhood

Wþ
rþ1 ¼ fw 2 Sn

r j wrþ1 > 0g. Then V þ
1 �Wþ

rþ1 is

one of the local coordinate of Hn
r�1 � Sn

r . We now

define a mapping

� : �1 \ ðV þ
1 �Wþ

rþ1Þ �! PT �Hn
r�1 j V þ

1

by

�ðv;wÞ ¼ ðv; ½ðw1v2 � w2v1Þ : 	 	 	 : ðw1vr � wrv1Þ :
ð�w1vrþ1 þ wrþ1v1Þ : 	 	 	 : ð�w1vnþ1 þ wnþ1v1Þ�Þ

Let ðv2; . . . ; vnþ1; ½�2 : 	 	 	 : �nþ1�Þ be homogeneous

coordinates of PT �Hn
r�1 j V þ

1 
 V þ
1 � P ðRn�1Þ�.

We have the canonical contact form � ¼Pnþ1
i¼2 ð�i=�jÞdvi on PT �Hn

r�1 over V þ
1 � Uj, where

Uj ¼ f½�� j �j 6¼ 0g. It follows that

��� ¼
�v1

wjv1 � w1vj
�
Xr
i¼1

widvi þ
Xnþ1

i¼rþ1

widvi

 !

¼
�v1

wjv1 � w1vj
hdv;wij�1 ¼

�v1

wjv1 � w1vj
�11;

where � depends on j of ��1ðV þ
1 � UjÞ. Since

�1 \ ðV þ
1 �Wþ

rþ1Þ ¼
[nþ1

j¼2

��1ðV þ
1 � UjÞ;

�11 is a contact form on �1 \ ðV þ
1 �Wþ

rþ1Þ such that

� is a contact morphism. We also have the similar

calculation as the above on the other coordinate

neighborhoods. Thus ð�1; �
�1
11 ð0ÞÞ is a contact

manifold. For the other �i ði ¼ 2; 3; 4Þ we define

smooth mappings �1i : �1 �! �i by

�12ðv;wÞ ¼ ðv; v þwÞ;
�13ðv;wÞ ¼ ðv �w;�wÞ;
�14ðv;wÞ ¼ ðv �w; v þwÞ:

We can construct the converse mappings defined by

�21ðv;wÞ ¼ ðv;w � vÞ;
�31ðv;wÞ ¼ ðv �w;�wÞ

�41ðv;wÞ ¼
v þw

2
;
w � v

2

� �
:

Therefore, �1i are diffeomorphisms. Moreover, we

have

��
12�21 ¼ hdv; v þwij�1 ¼ hdv; vij�1 þ hdv;wij�1

¼ hdv;wij�1 ¼ �11:

This means that ð�2; K2Þ is a contact manifold such

that �12 is a contact diffeomorphism. For �i

ði ¼ 3; 4Þ, we have the similar calculation, so that

ð�i; KiÞ ði ¼ 3; 4Þ are contact manifolds such that

�1i are contact diffeomorphisms. This completes

the proof. �

We can also give contact diffeomorphisms �ij :

�i �! �j for other pairs ði; jÞ as follows:
�23ðv;wÞ ¼ ð2v �w; v �wÞ;
�32ðv;wÞ ¼ ðv �w; v � 2wÞ;
�24ðv;wÞ ¼ ð2v �w;wÞ;

�42ðv;wÞ ¼
v þw

2
;w

� �
;

�34ðv;wÞ ¼ ðv; v � 2wÞ;

�43ðv;wÞ ¼ v;
v �w

2

� �
:

We now explain the situation by a ‘‘mandala of

Legendrian dualities’’ as the following commutative

diagram:
Hn

r−1 × Sn
r

∪

∆1

Ψ13

���
��

��
��

��
��

��
��

��
��

��
��

��
��

��

Ψ14��

Ψ12

����
��

��
��

��
��

��
��

��
��

��
��

��
��

�

∆4

Ψ41

��

Ψ42

����
��

��
��

��
��

��
��

��
�� Ψ43

���
��

��
��

��
��

��
��

��
��

�

∩

Λn × Λn

∆2

Ψ21

������������������������������� Ψ23 ��

Ψ24

		��������������������
∆3

Ψ31



�����������������������������

Ψ32

��

Ψ34

����������������������

∩ ∩

Hn
r−1 × Λn Λn × Sn

r

We can also consider the following two extra

double fibrations:

(5) (a) Sn
r � Sn

r � �5 ¼ fðv;wÞ j hv;wi ¼ 0g,
(b) �51 : �5 �! Sn

r , �52 : �5 �! Sn
r ,

(c) �51 ¼ hdv;wij�5, �52 ¼ hv; dwij�5.

(6) (a) Hn
r�1 �Hn

r�1 � �6 ¼ fðv;wÞ j hv;wi ¼ 0g,
(b) �61 : �6 �! Hn

r�1, �62 : �6 �! Hn
r�1,

(c) �61 ¼ hdv;wij�6, �62 ¼ hv; dwij�6.
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We have the following theorem.

Theorem 3.2. Under the same notations as

the above, each ð�i; KiÞ ði ¼ 5; 6Þ is a contact

manifold and both of �ij ðj ¼ 1; 2Þ are Legendrian

fibrations.

The proof of the theorem is almost the same as

that for ð�1; K1Þ in Theorem 3.1. We can show that

ð�5; K5Þ (respectively, ð�6; K6Þ) is locally diffeo-

morphic to the projective cotangent bundle � :

PT �Sn
r �! Sn

r (respectively, � : PT �Hn
r�1 �! Hn

r�1)

which sends Ki to the canonical contact structure.

We remark that these contact manifolds ð�j; KjÞ
ðj ¼ 5; 6Þ are not canonically contact diffeomorphic

to ð�i; KiÞ ði ¼ 1; 2; 3; 4Þ. Therefore we cannot

add these contact manifolds to the mandala of

Legendrian dualities. By definition, Sn
0 is a unit

sphere in Euclidean space Rnþ1
0 , so that ð�5; K5Þ

is the well known classical spherical duality in

this case. Finally we remark that �6 ¼ ; in Hn
0 �

Hn
0 .

4. Applications. In this section we consider

differential geometry of hypersurfaces in pseudo-

spheres as an application of the Legendrian dual-

ities theorems.

4.1. Pseudo-spheres in Rnþ1
1 . We consider

hypersurfaces in pseudo-spheres in Minkowski

space. In [7] it has been studied a local extrinsic

differential geometry on hypersurfaces in hyperbolic

space Hn
0 as an application of Legendrian singular-

ity theory. We give a brief review on the theory. Let

X : U �! Hn
0 be a regular hypersurface (i.e., an

embedding), where U � Rn�1 is an open subset. We

denote that M ¼ xðUÞ and identify M with U

through the embedding X. Since hX;Xi 
 �1, we
have hXui ;Xi 
 0 ði ¼ 1; . . . ; n� 1Þ, where u ¼
ðu1; . . .un�1Þ 2 U . This means that X is a timelike

unit normal vector field to M in Rnþ1
1 . We can

construct a spacelike unit normal eðuÞ of M in Hn
0

at p ¼ XðuÞ with the properties he;Xuii 
 he;Xi 

0; he; ei 
 1. Therefore the vector X � e is lightlike.

We define maps E : U �! Sn
1 and L� : U �! LC�

by EðuÞ ¼ eðuÞ and L�ðuÞ ¼ XðuÞ � eðuÞ which are

called the de Sitter Gauss image and the lightcone

Gauss image of M. In order to define curvatures for

M, we can use both of the de Sitter Gauss image E

and the lightcone Gauss image L� like as the Gauss

map of a hypersurface in Euclidean space. We can

interpret that dEðu0Þ is a linear transformation on

TpM for p ¼ Xðu0Þ. Since the derivative dXðu0Þ can
be identified with the identity mapping 1TpM on the

tangent space TpM under the identification of U and

M via the embedding X, we have

dL�ðu0Þ ¼ 1TpM � dEðu0Þ;

so that dL�ðu0Þ can be also interpreted as a linear

transformation on TpM. We call the linear trans-

formation Ap ¼ �dEðu0Þ the de Sitter shape oper-

ator and S�
p ¼ �dL�ðu0Þ : TpM �! TpM the light-

cone shape operator of M ¼ xðUÞ at p ¼ Xðu0Þ. The
de Sitter Gauss-Kronecker curvature of M at p ¼
Xðu0Þ is defined to be Kdðu0Þ ¼ detAp and the

lightcone Gauss-Kronecker curvature of M at p ¼
Xðu0Þ is K�

‘ ðu0Þ ¼ detS�
p .

In [7] we have investigate the geometric mean-

ings of the lightcone Gauss-Kronecker curvature

from the contact viewpoint. One of the consequen-

ces of the results is that the lightcone Gauss-

Kronecker curvature estimates the contact of

hypersurfaces with hyperhorospheres. It has been

also shown that the Gauss-Bonnet type theorem

holds on the (normalized) lightcone Gauss-

Kronecker curvature [9]. We emphasize that we

discovered a new geometry in hyperbolic space

through these research [3,7,9,13] which is called

‘‘Horospherical Geometry’’. We can interpret the

above construction by using the Legendrian duality

theorem. For any regular hypersurface X : U �!
Hnð�1Þ, we have hXðuÞ;EðuÞi ¼ 0. Therefore, we

can define a pair of embeddings L1 : U �! �1 by

L1ðuÞ ¼ ðXðuÞ;EðuÞÞ. By definition, L1 is a Legen-

drian embedding if and only if E is a spacelike unit

normal vector field along M. Therefore we have the

wave front EðUÞ ¼ �12 � L1ðUÞ of L1ðUÞ through the

Legendrian fibration �12. On the other hand, by the

mandala of Legendrian dualities, L2 ¼ �12 � L1 is a

Legendrian embedding into ð�2; K2Þ, so that we

have L2ðuÞ ¼ ðXðuÞ;LþðuÞÞ. If we consider another

normal direction EðuÞ ¼ �eðuÞ, then we have

L2ðuÞ ¼ ðXðuÞ;L�ðuÞÞ. Moreover, the mandala of

the Legendrian dualities gives more information.

We have L3 ¼ �13 � L1 and L4 ¼ �14 � L1 which are

Legendrian embeddings into ð�3; K3Þ and ð�4; K4Þ
respectively. Especially L4 is useful for the study of

spacelike hypersurfaces in the nullcone (lightcone).

Since the induced metric on the nullcone is degen-

erate, we cannot apply ordinary submanifold theory

of semi-Riemannian geometry. In [8] the Legendrian

embedding L4 has been used for the construction

of the extrinsic differential geometry on spacelike

hypersurfaces in the nullcone. In [17] Kasedou
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constructed the extrinsic differential geometry on

spacelike hypersurfaces in Sn
1 analogous to the

theory in [7]. For a spacelike embedding X : U �!
Sn
1 , he defined a hyperbolic Gauss image E : U �!

Hn
0 and a lightcone Gauss image L� : U �! �n

exactly the same way as those in [7]. Of course,

some geometric properties are different from those o

hypersurfaces in Hn
0 . We can also interpret his

construction by the mandala of Legendrian dual-

ities similar way as the case for hypersurfaces in Hn
0 .

However, we have some more information by the

mandala of Legendrian dualities. We can start any

Legendrian embedding Li : U �! �i ði ¼ 1; 2; 3; 4Þ.
Here we start i ¼ 1. Then we write L1ðuÞ ¼ ðXhðuÞ;
XdðuÞÞ, Mh ¼ XhðUÞ and Md ¼ XdðUÞ. Since L1

is a Legendrian embedding, Xh and Xd can be

considered as unit normal vector fields each other. If

Xh;Xd are immersive, these are exactly unit

normal vector fields each other in the ordinary

sense, so that we can define the principal curvatures

on these hypersurfaces each other. Suppose that

both of Xh and Xd are immersive, we denote �h
dðuÞ

(respectively, �d
hðuÞ one of the principal curvatures

of Mh (respectively, Md) with the Gauss image Xd

(respectively, Xh) at u 2 U . Under the identifica-

tion of U with Mh (respectively, Md) through Xh

(respectively, Xd), dXd is the inverse mapping of

dXh vice versa. Therefore we have the following

proposition.

Proposition 4.1. Under the above notation,

suppose that both of Xh and Xd are immersive.

Then we have the relation �h
dðuÞ�d

hðuÞ ¼ 1.

By the above proposition, we have nice dual

relations between special surfaces in H3
0 and S3

1 . For

example the dual surface of a Linear Weingarten

surface in H3
0 is also a Linear Weingarten surface in

S3
1 vice versa. There appeared several results on

such surfaces recently [1,6,18]. Moreover, in [14,16]

it has been classified the generic singularities of

exceptional Linear Weingarten surfaces in H3
0 and

S3
1 which are corresponding by the Legendrian

duality. There are very beautiful dual relations

between these singularities.

4.2. Anti de Sitter space in Rnþ1
2 . In [4,5,15]

extrinsic differential geometry on submanifolds in

Anti de Sitter space are investigated. In these

papers, it has been only considered the case when

n � 4. The detailed arguments for the general

dimension case will be appeared in elsewhere. Let

X : U �! Hn
1 be an embedding from an open subset

U � Rn�1. We denote that M ¼ XðUÞ and identify

U and M through X. If M is a spacelike hypersu-

face, we have the timelike unit normal eðuÞ 2 Hn
1 . In

this case, we can apply the Legednrian duality

ð�6; K6Þ and obtain the similar results as those of

the classical spherical geometry (cf., [4]). For a

timelike hypersurface M, we have the spacelike unit

normal eðuÞ 2 Sn
2 and the null normal N�ðuÞ ¼

XðuÞ � eðuÞ 2 �n like as in [7]. Therefore we have

Legedrian embeddings L1 : U �! �1 and L�
2 :

U �! �2 defined by L1ðuÞ ¼ ðXðuÞ; eðuÞÞ and

L�
2 ðuÞ ¼ ðXðuÞ;N�ðuÞÞ. The Legendrian embed-

ding L2 is the most interesting one. Analogous to

the previous subsection, we can define the principal

curvatures by using the Legendrian duality and

study geometric properties of these curvatures as an

application of the theory of Legendrian singularities

(cf., [5] for n ¼ 3). We denote the product of the

principal curvatures KAdSnðuÞ corresponding to the

Legendrian embedding L2 and call it the AdS-null

Gauss-Kronecker curvature of M. In this case, we

have the following construction: We define the

following set

S1
t � Sn�2

s ¼ fx ¼ ðx1; 	 	 	 ; xnþ1Þ 2 �n j x2
1 þ x2

2 ¼ 1g:

For any x ¼ ðx1; 	 	 	 ; xnþ1Þ 2 �n, we have

x ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
1 þ x2

2

p x 2 S1
t � Sn�2

s :

We may consider that S1
t � Sn�2

s is the ideal

boundary (i.e., the end) of Hn
1 which has a

conformally flat Lorentzian structure. We can

define the Anti de Sitter S1
t � Sn�2

s -Gauss map

NG
�
: U �! S1

t � Sn�2
s

by NG
�ðuÞ ¼ N�ðuÞ. We define the corresponding

Gauss-Kronecker curvature by differentiating the

Anti de Sitter S1
t � Sn�2

s -Gauss map. We denote it

KAdSnðuÞ and call the normalized AdS-null Gauss-

Kronecker curvature of M. We can show that the

Anti de Sitter S1
t � Sn�2

s -Gauss map is a Lagrangian

map such that the Legendrian embedding L2ðUÞ is a
covering over the Lagrangian submanifold which is

the lift of the Anti de Sitter S1
t � Sn�2

s -Gauss map.

Since singularities of N� (respectively, NG
�
) are

the zero points set of KAdSn (respectively, KAdSn),

the singular set of N� and NG
�

are the same.

Moreover, in [5] we have shown that generic

singularities of N� are the only the cuspidaledge

or the swallowtail. The cuspidaledge is parame-
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trized by C ¼ fðx1; x2; x3Þ j x1
2 ¼ x2

3g and the

swallowtail is SW ¼ fðx1; x2; x3Þ j x1 ¼ 3u4 þ u2v;

x2 ¼ 4u3 þ 2uv; x3 ¼ vg (cf., Fig. 1). By a general

result of the theory of Legendrian/Lagrangian

singularities, the cuspidaledge (respectively, the

swallowtail) of N� is the fold point (respectively,

the cusp point) of NG
�
(cf., [2], Part III).

Finally we remark that there is a conjecture in

Physics that the classical gravitation theory on

AdSn is equivalent to the conformal field theory on

the ideal boundary of AdSn proposed by Maldacena

[19]. It is called the AdS=CFT -correspondence or

the holographic principle [21]. If the conjecture is

true, extrinsic geometric properties on submani-

folds in AdSn have corresponding Gage theoretic

geometric properties in the ideal boundary S1
t �

Sn�2
s . Here, we might say that the Anti de Sitter

S1
t � Sn�2

s -Gauss map is one of the analogous

notions belonging to the AdS=CFT -correspondence

in Mathematics.
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