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On some estimates of the pressure for the Stokes equations

in an infinite sector

By Shigeharu ITOH,” Naoto TANAKA™ and Atusi TANI**")

(Communicated by Masaki KASHIWARA, M.J.A., March 12, 2009)

Abstract:

Some a priori estimates of the pressure for the Stokes equations in an infinite

sector with the slip and the stress conditions on the boundary are established in weighted Sobolev
spaces. The estimates for its higher order derivatives are obtained by the general scheme of
Kondrat’ev. Instead the estimates for the lower order ones are derived by making use of the
Mellin transformation and the explicit representation formula of the pressure.
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1. Introduction. Let dy be a plane sector of
opening 6, 6 € (0,27], in the polar coordinates (r, ¢),

dg = {x = (rcosp,rsing) € R* | r > 0,0 < ¢ < 6}

with 49 ={¢=0,r > 0}, vo = {¢ =0,r > 0} being
the sides of the sector.

The following boundary value problem for the
Stokes equations with a parameter s € C is closely
related to the evolution free boundary problem for
the Navier-Stokes equations with contact lines (see
1)

su—vAu+Vg=f, V-u=0
2VD12(11)‘% = b(),
P(u, q)ny|,, = by.

in dy,

(1.1) ugl, =0,

Here, u = u(x, s) = (ui(x, s), us(x, s)) is the velocity
vector field, V = (%1 , a%), P(u,q) = —¢I + 2vD(u)
is the stress tensor, D(u) is the velocity deformation
tensor with elements Dj;(u) = %(g:j + %) (i, =
1,2), I is the unit tensor of rank 2, ny is the unit
vector of the outward normal to vy, f = (f1, f2), bo,
by are given functions on dy, vy and 7y, respectively,
and v is a coeflicient of viscosity, assumed to be a
positive constant.

Similarly for the incompressible Navier-Stokes

equations, in analyzing the problem (1.1) the
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estimates for the pressure ¢ play an essential role.
It is easy to derive the following problem for ¢ from

(1.1).

Agq=V - -f in dy,
dq Oby
(1.2) s, falyy = 9z,

q|79 = QZ/D(U)IIQ . Ilg|79 — bg * 1g.

In this paper we focus to the a priori estimates
for ¢ to the problem (1.2). Owing to the general
theory of Kondrat'ev [3] such estimates can be
derived. However his result leads to the estimates in
higher order norms only, i.e.,

2
13)  lales,
2 727}6 (e [e% 2
- / 20249 Dag () da
|| <24k @0
for k=0,1,2,...

The a priori estimates of ¢ in lower order norms,
especially of ¢ itself, in the interior of a domain to
problem (1.2) have its own interest, because in
general it is essential for the solvability of the
boundary value problems for partial differential
equations of elliptic type even if the boundary is
smooth.

Our main theorem is as follows:

Theorem 1. Let 6 € (0,2n] and p# (m+
1/2)7/6, m € Z. Suppose that u, £, by, and by are
given functions satisfyng

2 _ 2 _
IVall,, o = [ 96l ar < o,
Yo
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2 _ 2 2
191, 00 = [ 18710l do < o
0

2 _ 2 _
||b0||L2_“71/2(70) = [bol rhdr < 0,
Yo

2
”b“"”Lzuq/z(W’s) < 00,

and q is a solution of (1.2). Then we have the

estimate
— 1
L) lal, = /1 g2
cO 9 9
< oty Ul + 100l

ol e + 21V, )

with a constant c independent of 8, v and p.

We should be careful of the particular form of
the right hand side and its dependence on the
constants 6, v and p as in (1.4) since they are
important for further studies about the wellposed-
ness of various nonlinear problems with contact
lines. Our method for it relies upon the explicit
representation formula of ¢ shown below (see also
4]).

Corollary 1. Let 0, p and f be as in
Theorem 1 and ) be the solution of problem

AY=V-f in dy,
(1.5) M| _ _
Faal = Fobu Uhy =0

Then inequality
(1.6) ||V¢||L2W(d0) < C||fHL2_,,(d,,)

holds for some constant c.

Remark. On the basis of estimates (1.4),
(1.6) together with (1.3), after decomposing f €
L, (dy) into f = f* + Vi) with 9 being the solution
of problem (1.5) and £* = (ff, f3) satisfying V - £* =
0 in dy and f;], =0 we shall establish in [2] the
unique solvability of problem (1.1).

Proof of Corollary 1. We multiply equation
(1.5) by w|z[** and integrate over dy. After the
integration by parts we obtain with the help of
Young’s inequality

||V¢Hi2_,,,(da>
<o [ etierar s [ et as
0

dy
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+ [ 199 eaf a )
dy

< eIVl + C- (190, ) + 1€, )

for any € > 0. Then choosing & suitably small and
applying Theorem 1, one can deduce (1.6). O

2. Proof of Theorem 1. First of all we
transform problem (1.2) by the polar coordinates

2@

a0+ () = ) i
dq Oby

% - =rf,(r,0) — TE = ay(r),
q‘:p:& = 21/D(u)n9 ! n9|fy6, - b9 Ny = CLQ(T),
where
cosy  sing
f:(flva):(fryfgo)< . )
—sing cosgp

By the Mellin transform with respect to r
b(\) = / A o(r)dr, A=A 4 i),
0

the following mixed problem of ordinary differential
equations with respect to ¢ € (0,6) is derived:

(X" + <%> )5@»@)

= g()‘v 90) on (07 9)’
dg
dyp

(2.1)

= al()‘)’ ‘(jlgp

p=0

—p = as(r).

We seek a solution of problem (2.1) as ¢ = ¢ + ¢,
where ¢q; and g» are, respectively, solutions of

()\2 + <%)2>§1()\,¢) =0 on (0,0),

(2.2) e
q1 ~ ~ -
_— = A =
do o ai(A), ‘11|¢:9 as(r)
and
d\?\ _
)‘2 + (d_) qQ()‘a SD) = g(>\7 Qp) on (Oa9>7
®
(2.3) &
2 = 07 q?‘ =0 — =0.
dsﬁ =0
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It is not difficult to get the following explicit

formulae for ¢; and qo.
Lemma 1.
given by

sin(A(0 — ¢)) _

@) == Acos(\)

(r£,) (X, 0) + Abo(A), s0 that

- B sin(A(0 — ¢))  ~
QA ) = T T heos0d) (rfp) (A, 0)
cos(Ay)

sin(A(6 — ) ~
~ cos(M) bo(X) + cos(A9)

Here a;(\) =

B(\).

Lemma 2.
given by
©))cos(AT) _
A, 7)d
)\cos (M) g, 7)dr
7)) cos(Ap)
)\cos (N\9)

/¢ sin(A
0
/9 sm
%}

G\ 0) = —A(T) + d“; (F),

g(A, ) dr.

Since

one can find by the integration by parts

?1'2()‘7 30)

?sin(A(0 — ¢)) cos(AT)  ~
/0 cos(\0) (rfr) (A, 7)dr

9sin(A(0 — 7)) cos(\p)
+ / R R ) ar

3 /w sin(A(0 — )) cos(A1) d
)\cos(/\ﬂ) dr
d
dr

/ b 7)) cos(Ap)
0 )\ cos )\9)

¢ sin(A\(0 — ¢)) cos(AT) (r?)(x\ ) dr

(rfo)(A\,1)dr

(rfo)(\,7) dr

; cos()\e)

+ / e /\QEOS(A@) (1) dr
/ T AH; P (T ar
% (rFo)(A0).

Therefore the solution of (2.1) is expressed as

The solution of problem (2.2) is

The solution of problem (2.3) is

24) g e) = a(h @)+ @\ @)
wsin( (0 — @) cos(AT) , ~

- cos()\ﬁ) (rfr)A 1) dr

sin(A 7)) cos(Ap)

L 2 e

- /‘*” sin(A(f — ¢)) sin(A7)
0 cos(A)

B /9 cos(A(0 — 7)) cos(Ap)
0 cos(\0)

(rfp)(\,7)dr

(r fga)()‘ 7) d

S0 9) -
cos(A\0)

By Parseval’s equality

*° 1
/ b(r)]? P~ dr = —
0

27T1 )\1 —ioco

A1 +ioo -

BV dA,
we see

laf* |27 da

dy

= / / Ja* " dg dr
oo
27T1 /lq

Substitute (2.4) into the integrand and estimate
each term. Last two terms of the right hand side of
(2.4) can be estimated in the same way. Indeed, for
the last term, since

2
lallL,, ) =

©)[> dp d.

cos(Ag) |2
cos(A\0) ‘
~ cos? (M) cosh?(Xaep) + sin(A;¢) sinh?(Aag)
— cos2(M0) cosh? (M) + sin®(A160) sinh?(Az0)
< cosh?(Aa¢) + sinh?(As¢)

cos?(A16) cosh?(\20)
cosh?(Aaf) + sinh?(\26)

cos?(\10) cosh?(\20)
1 + tanh?(\26) < 2

cos2(\f) T cos?(\6)’

(2.5)

we get

p+ioco
(2.6) /
27(-1 p—ioco 0
p+ioo

P —
27 C082 ( uh) /ﬂm

COS

cos(\0)

‘|~ )2 dedr

jaz(A)I* dx
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- cos?(uf) [las HLz,u—l/z(’Ye)'

Next we consider the other integral terms of
the right hand side of (2.4). For the first term we
have by virtue of the Schwarz inequality

?sin(A(0 — ¢)) cos(AT)  ~
/0 cos(\0) (rfr) A7) dr
< ¢
</

sin(A(0 — @) cos(A7)|?
dr
cos(A9)
( / ‘ (r fT A T) dT)
The integrand of the first integral in the right hand
side is estimated as

2

sin(A(0 — ¢)) cos(A7) 2
cos(A\0)

|sin(A(0 — ¢ + 7)) + [sin(M0 — ¢ — 7))
|lcos(A0)|?

Since |0 —p+7|<6 for 0<7<p<H we can
estimate the right hand side of (2.7) in a similar
way as (2.5). Hence

p+ioco
27 / /

x (rfr) (A7) dr

1 u+1oc
— (r
2 cos2 ,u9 / / fr
oo
~om cos2 u@ / /

(2.7)

| 2

1
-2

?sin(A(0 — ¢)) cos(AT)
cos(A0)

dAd@

)fdAd@

ﬁ»A+1#ﬂ‘dAd@
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2
Fn )| drdg

+1+1oo
= omi cos2 ,u@ / /,U‘H 100

_ 2 2(/L+1)71d d
s [ [l

Y
~ cos?(ub) L2, (do)*

From (2.6) and (2.8) we can deduce the desired
estimate.

Almost the same calculations as above bring
the similar estimates for other integral terms, and
finally (1.4) is concluded.

Thus, the Proof of Theorem 1 is completed.
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