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Abstract: A rational Diophantine m-tuple is a set of m nonzero rationals such that the

product of any two of them is one less than a perfect square. Recently Gibbs constructed several

examples of rational Diophantine sextuples with positive elements. In this note, we construct

examples of rational Diophantine sextuples with mixed signs. Indeed, we show that such

examples exist for all possible combinations of signs.
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1. Introduction. A set of m nonzero ration-

als fa1; a2; . . . ; amg is called a (rational) Diophan-

tine m-tuple if aiaj þ 1 is a perfect square for all

1 � i < j � m (see [5]).

The principal question is how large a rational

Diophantine tuple can be. In case of integer

Diophantine tuples, the corresponding question is

almost completely answered. Namely, it is well-

known and easy to prove that there exist infinitely

many integer Diophantine quadruples (e.g. fk� 1;

kþ 1; 4k; 16k3 � 4kg for k � 2), while it was proved

in [8] that there does not exist an integer Diop-

hantine sextuple and there are only finitely many

such quintuples (see also [10]). However, in the case

of rational Diophantine tuples, no absolute upper

bound for the size of such sets is known (the

existence of such a bound follows from the Lang

conjecture on varieties of general type). The first

example of a rational Diophantine quadruple was

the set f 1
16 ;

33
16 ;

17
4 ; 10516 g found by Diophantus (see

[4]). Euler found infinitely many rational Diophan-

tine quintuples (see [13]). E.g.

1; 3; 8; 120;
777480

8288641

� �
:

Since 1999, several examples of rational Diophan-

tine sextuples were found by Gibbs [11,12]. The first

example was

11

192
;
35

192
;
155

27
;
512

27
;
1235

48
;
180873

16

� �
:

No example of a rational Diophantine septuple is

known.

If fa1; a2; a3; a4; a5g is a rational Diophantine

quintuple, we may consider the hyperelliptic curve

y2 ¼ ða1xþ nÞða2xþ nÞða3xþ nÞða4xþ nÞða5xþ nÞ

of genus g ¼ 2. Caporaso, Harris and Mazur [2]

proved that the Lang conjecture on varieties of

general type implies that for g � 2 the number

Bðg;KÞ ¼ maxC jCðKÞj is finite. Here C runs over

all curves of genus g over a number field K, and

CðKÞ denotes the set of all K-rational points on C.

Therefore, the number of elements in a rational

Diophantine tuple should be bounded by 5þ
Bð2;QÞ (and also by 4þ Bð4;QÞ, see [14]).

It can be noted that all Gibbs’ examples of

sextuples contain six positive rationals. Thus, it

makes sense to ask if there exist such sextuples with

mixed signs. Since fa1; . . . ; a6g is a Diophantine

sextuple if and only if f�a1; . . . ;�a6g has the same

property, it suffices to find sextuples with exactly

one, two and three negative elements.

2. The constructions. In the constructions

of rational Diophantine sextuples, we use several

techniques. Most of them can be explained in terms

of elliptic curves.

If fa; bg is a rational Diophantine pair, then

fa; b; aþ b� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
abþ 1

p
g is a rational Diophantine

triple. Such triples are called regular.

Let fa; b; cg be a (rational) Diophantine triple.

In order to extend this triple to a quadruple, we

have to solve the system

axþ 1 ¼ �; bxþ 1 ¼ �; cxþ 1 ¼ �:ð1Þ
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It is a natural idea to assign to the system (1) the

elliptic curve

E: y2 ¼ ðaxþ 1Þðbxþ 1Þðcxþ 1Þ:ð2Þ

There are three rational points on E of order 2, and

also other obvious rational points

P ¼ ½0; 1�; S ¼
1

abc
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðabþ 1Þðacþ 1Þðbcþ 1Þ

p
abc

" #
:

The x-coordinate of a point T 2 EðQÞ satisfies (1)

if and only if T � P 2 2EðQÞ (see [6]). It can be

verified that S 2 2EðQÞ. This implies that the

numbers xðP � SÞ satisfy the system (1). These

numbers are exactly the numbers

dþ;� ¼ aþ bþ cþ 2abc

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðabþ 1Þðacþ 1Þðbcþ 1Þ

p
obtained by Arkin, Hoggatt and Strauss [1]. They

proved that fa; b; c; dþg and fa; b; c; d�g are rational

Diophantine quadruples (if their elements are dis-

tinct and nonzero). Quadruples of this form are

called regular. The conjecture is that all integer

Diophantine quadruples are regular. Note that if

fa; b; cg is a regular triple, then dþd� ¼ 0.
Let fa; b; c; dg be a rational Diophantine quad-

ruple such that abcd 6¼ 1 and let

eþ;� ¼
ðaþ bþ cþ dÞðabcdþ 1Þ

ðabcd� 1Þ2

þ
2abcþ 2abdþ 2acdþ 2bcd

ðabcd� 1Þ2

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðabþ 1Þðacþ 1Þðadþ 1Þðbcþ 1Þðbdþ 1Þðcdþ 1Þ

p
ðabcd� 1Þ2

:

In [5] we proved that fa; b; c; d; eþg and fa; b; c;
d; e�g are rational Diophantine quintuples (if their

elements are distinct and nonzero). Note that if

fa; b; c; dg is a regular quadruple, then eþe� ¼ 0 (see

[5, Proposition 2]). A rational Diophantine quintu-

ple fa; b; c; d; eg is called regular if it is obtained by

the construction from [5] or, equivalently, if

ðabcdeþ 2abcþ aþ bþ c� d� eÞ2

¼ 4ðabþ 1Þðacþ 1Þðbcþ 1Þðdeþ 1Þ:
This construction can be explained also in the terms

of elliptic curve E. Namely, let D be the point on E
with the x-coordinate d. Then the numbers eþ and

e� are exactly the x-coordinates of the points D� S

on E. (See [7] for the characterization of regular

quadruples and quintuples in terms of the elliptic

curve y2 ¼ ðaxþ 1Þðbxþ 1Þðcxþ 1Þðdxþ 1Þ.)

Now we describe briefly three techniques for

contruction of rational Diophantine sextuples.

. Let abþ 1 ¼ r2 and c ¼ aþ bþ 2r, i.e. take

fa; b; cg to be a regular rational Diophantine

triple. Consider the elliptic curve E given by

(2). We may expect that it has infinitely many

rational points (see [9]). Of course, we can test

only finitely many such points. The test will

involve the condition that certain rational

number, with randomly-looking numerator, is

a perfect square, which is more likely to be

satisfied if the numerator is small. Thus, in this

construction we use rational points of relative-

ly small heights on E. For example, if

rankðEðQÞÞ ¼ 2 and X1; X2 are generators of

EðQÞ=EðQÞtors, we consider the points of the

form T ¼ m1X1 þm2X2, for jmij 2 f0; 1; 2; 3g.
If D ¼ P þ 2T ¼ ½d; d0�, then fa; b; c; dg is a

rational Diophantine quadruple (at least

some of these quadruples are irregular; this is

why we prefer to avoid curves with rank 1).

Define the points E ¼ Dþ S ¼ ½e; e0� and F ¼
D� S ¼ ½f; f 0�. Then fa; b; c; d; eg and fa; b; c;
d; fg are rational Diophantine quintuples (and

if fa; b; c; dg was irregular, then ef 6¼ 0). If

ef þ 1 is a perfect square, then fa; b; c; d; e; fg
is a rational Diophantine sextuple (assuming

that all its elements are distinct and nonzero).

In that way, we find e.g. the sextuple f 5
36 ;

5
4 ;

32
9 ; 1894 ; 665

1521 ;
3213
676 g with positive elements (found

already by Gibbs [12]), but also several sextu-

ples with mixed signs, e.g. f 5
14 ;

7
2 ;

48
7 ; 1680361 ;

� 2310
19321 ;

93840
71407g.

. Take again the regular triple fa; b; cg, where

c ¼ aþ bþ 2r, and apply the same construc-

tion to obtain a regular triple fb; c; dg. We find

that d ¼ aþ 4bþ 4r. The only remaining con-

dition in order that fa; b; c; dg be a Diophantine

quadruple is that adþ 1 is a perfect square.

This condition leads to ðaþ 2rÞ2 � 3 ¼ �, and

it is satisfied if we take r ¼ u�a
2 , where u ¼ �2þ3

2�

for � 2 Q.

Applying the construction from [5] to the

quadruple fa; b; c; dg, we obtain the quintuples

fa; b; c; d; eþg and fa; b; c; d; e�g. If eþe� þ 1 is

a perfect square, then fa; b; c; d; eþ; e�g is a

rational Diophantine sextuple (assuming that

all its elements are distinct and nonzero). As

an example of a sextuple obtained by this

construction, we give f2735 ;� 35
36 ;

1007
1260 ;� 352

315 ;

28 A. DUJELLA [Vol. 85(A),



72765
106276 ;� 5600

4489g.
. Let fa; bg be a rational Diophantine pair. For a

rational number t, define c ¼ � 4tð�1þtÞðbt�aÞ
ð�aþbt2Þ2 . It

is easy to check that acþ 1 and bcþ 1 are

perfect squares, and therefore fa; b; cg is a

rational Diophantine triple. We can extend

this triple to an (irregular) quadruple by

d ¼ 8ðc�a�bÞðaþc�bÞðbþc�aÞ
ða2þb2þc2�2ab�2ac�2bcÞ2 (see [5, Proposition 3]).

This number is the x-coordinate of the point

3P on E. Again, we can apply the construction

from [5] to the quadruple fa; b; c; dg, to obtain

eþ and e�, and if eþe� þ 1 is a perfect square,

then we get a rational Diophantine sextuple

fa; b; c; d; eþ; e�g (provided that all its elements

are distinct and nonzero). The reason why

in this construction we use irregular triples

fa; b; cg is that for regular triples, we have

d ¼ dþ, so the resulted quadruple is regular

and gives eþe� ¼ 0. By this construction

we find e.g. the sextuple f� 5
9 ;

32
45 ;

27
20 ;

216032
937445 ;

� 185232905
263802564 ;

175578975
136095556g.

The described algorithms are implemented in

PARI/GP [15], and for computing the ranks we use

MWRANK [3].

3. Examples. We give the list of 26 rational

Diophantine sextuples with mixed signs obtained

by the constructions described in the previous

section.

By the first method we obtain the following

rational Diophantine sextuples:

19
12;

33
4 ;

52
3 ;

60
2209;�

495
24964;

595
12

� �
;

31
84;

9
7;

49
12;

160
21 ;�

455
3468;

7200
2023

� �
;

5
14;

7
2;

48
7 ;

1680
361 ;�

2310
19321;

93840
71407

� �
;

7
40
;�75

56
; 41
70
;�5376

4805
;�300288

241115
; 165
224

� �
;

5
24
;�64

15
;�407

120
;�1530

361
; 2088
9245

; 399245
2889816

� �
;

� 8
17
; 85
72
;� 763

1224
; 18360
11449

; 4914
8993

; 332605
496008

� �
;

� 5
33
; 121
60
; 131
660

; 171360
30899

; 51978528
54014455

; 8041
1500

� �
;

8
23
; 161
72
; 8695
1656

; 54648
22201

;�11270
62001

; 46288935
9481336

� �
:

We note that the sextuple f31
84
; 9
7
; 49
12
; 160
21

;� 455
3468

;
7200
2023g is rediscovered by the second method. By the

second method we also find the following rational

Diophantine sextuples:

147
20 ;

25
28;

96
35;�

11
140;

30723
3380 ;

165
1183

� �
;

253
1140;�

9
380;

125
57 ;

247
60 ;

6688
375 ;

2016
95

� �
;

27
35
;�35

36
; 1007
1260

;�352
315

; 72765
106276

;�5600
4489

� �
;

Finally, we list the rational Diophantine sextuples

found by the third method:

1
6
; 27
8
; 385
96
; 1280
243

; 250705
44376

;� 25415
161376

� �
;

27
14
; 49
18
;�16

63
; 269654
113569

; 11572496
19969047

;�15578784
44488087

� �
;

24
35
;�75

56
; 77
120

;�846600
634207

; 5629624
7540215

;�4456963
3346680

� �
;

5
9
;�27

20
;�55

36
; 96305
158404

; 23144992
59202405

;�31157568
20220605

� �
;

5
9
;�27

20
; 13
20
;�304083

212180
; 20055200
31573161

;�79520320
67125249

� �
;

�5
9
; 27
20
; 32
45
; 216032
937445

;�185232905
263802564

; 175578975
136095556

� �
;

27
11
; 77
36
;�32

99
;� 43424

2297339
; 811864053
368716804

;� 808311427
2102956164

� �
;

21
22
; 33
56
;�64

77
;�3340352

3625853
; 1092049959
1018087688

;� 778578801
1587999368

� �
;

27
35
;�35

36
; 161
180

;�4771879
4287380

; 917801280
4823805007

;�2117588000
6213359943

� �
;

5
28
;�27

35
; 35
36
; 3838005
64606108

; 324705510976
300303876645

;�329539009184
358699363245

� �
;

7
26;�

221
72 ;�

297
104;

226791
1867424;

18453763328
60529284729;�

19040799232
6576074649

� �
;

�14
45;

135
56 ;�

185
504;

25432135
14622776;

11585718144
50291423405;

314271141184
117352732005

� �
;

14
45;�

135
56 ;�

832
315;

21739328
125951315;

197932494375
570623898632;�

207609892105
76457704968

� �
;

�14
45;

77
40;

135
56 ;

203687253
361681960;�

5323853454400
12959750399967;

4826209930880
3371383988343

� �
;

� 7
17;�

425
1008;

2432
1071;

80888528768
50503742919;

�
1661966668042065
1421147949949456;

13748985346416705
5799449383741456

�
:

4. Curves with the rank 8. The examples

of rational Diophantine sextuples found by Gibbs

were used in [7] and [9] to find examples of elliptic

curves of the form

y2 ¼ ðaxþ 1Þðbxþ 1Þðcxþ 1Þðdxþ 1Þ;ð3Þ

where fa; b; c; dg is a Diophantine quadruple, and

y2 ¼ ðaxþ 1Þðbxþ 1Þðcxþ 1Þ;ð4Þ

where fa; b; cg is a Diophantine triple, with rela-

tively large rank. In both cases, examples with rank

equal to 8 were found. Using the examples from the

previous section, i.e. taking fa; b; c; dg and fa; b; cg
to be subquadruples and subtriples of Diophantine

sextuples, we can find more examples with the same

property. Indeed, we have found by MWRANK

that the curve (3) has rank 8 for

fa; b; c; dg ¼ 385

96
;
1280

243
;
250705

44376
;� 25415

161376

� �
;

while the curve (4) has rank 8 for fa; b; cg equal

to
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�
1530

361
;
2088

9245
;
399245

2889816

� �
;

8695

1656
;
54648

22201
;
46288935

9481336

� �
;

8695

1656
;� 11270

62001
;
46288935

9481336

� �
;

21

22
;
1092049959

1018087688
;�

778578801

1587999368

� �
;

96305

158404
;
23144992

59202405
;� 31157568

20220605

� �
;

269654

113569
;
11572496

19969047
;�

15578784

44488087

� �
:

The ranks have been computed unconditionally,

except for the last two triples where MWRANK

gives that the rank is equal to 7 or 8, while the

Parity Conjeture gives that the rank is even.
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Fermat’s quadruple equations, Abh. Math.
Sem. Univ. Hamburg 69 (1999), no. 1, 283–291.

[ 15 ] PARI/GP, version 2.3.3, Bordeaux, 2008. http://
pari.math.u-bordeaux.fr/.

30 A. DUJELLA [Vol. 85(A),


	c_A_H_S
	c_C_H_M
	c_mwrank
	c_Dio
	c_D_acta2
	c_D_rim
	c_D_irr
	c_D_crelle
	c_D_mw
	c_Fuj_reg
	c_Gibbs1
	c_Gibbs2
	c_Hea
	c_P_H_Z
	c_pari

