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Abstract: This article is devoted to introduce a new class of nonassociative algebras with

involution including the class of structurable algebras.
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1. Introduction. Our start point briefly

described in a historical setting is the construction

of Lie (super)algebras starting from a class of

nonassociative algebras. Hence within the general

framework of ð�; �Þ-Freudenthal Kantor triple sys-

tems (�; � ¼ �1) and the standard embedding Lie

(super)algebra construction studied in [5,6,9–12]

(see also references therein) we define �-structur-

able algebras as a class of nonassociative algebras

with involution which coincides with the class of

structurable algebras for � ¼ 1 as introduced and

studied in [1,2]. Structurable algebras are a class of

nonassociative algebras with involution that in-

clude Jordan algebras (with trivial involution),

associative algebras with involution, and alterna-

tive algebras with involution. They are related to

generalized Jordan triple systems of second order

(or ð�1; 1Þ-Freudenthal Kantor triple systems) as

introduced and studied in [14,15] and further

studied in [3,4,13,18–21] (see also references there-

in). Their importance lies with constructions of five

graded Lie algebras

Lð�; �Þ ¼ L�2 � L�1 � L0 � L1 � L2; ½Li; Lj� � Liþj:

For � ¼ �1 the anti-structurable algebras defined

here are a new class of nonassociative algebras that

may similarly shed light on the notion of ð�1;�1Þ-
Freudenthal Kantor triple systems hence (by [5,6])

on the construction of Lie superalgebras and Jordan

algebras as it will be shown.

Throughout the paper it is assumed that ðA;� Þ
is a finite dimensional nonassociative unital algebra

with involution (involutive anti-automorphism, i.e.

x ¼ x and xy ¼ y x for x; y 2 A) over a field F,

charF 6¼ 2 or 3. The identity element of A is

denoted by 1. Since charF 6¼ 2, by [1] we have

A ¼ H� S, where H ¼ fa 2 Aja ¼ ag and S ¼
fa 2 Aja ¼ �ag.

Suppose x; y; z 2 A. Put ½x; y� :¼ xy� yx and

½x; y; z� :¼ ðxyÞz� xðyzÞ. Note that

½x; y; z� ¼ �½z; y; x�:ð1Þ

The operators Lx and Rx are defined by

LxðyÞ :¼ xy;RxðyÞ :¼ yx:

2. �-structurable algebras. For � ¼ �1

and x; y 2 A define

�Vx;y :¼ LLxðyÞ þ �ðRxRy �RyRxÞ;ð2Þ
�BAðx; y; zÞ :¼ �Vx;yðzÞ ¼ð3Þ

ðxyÞzþ �½ðzyÞx� ðzxÞy�; x; y; z 2 A:

þBAðx; y; zÞ is called the triple system obtained

from the algebra ðA;� Þ. We will call �BAðx; y; zÞ the
anti-triple system obtained from the algebra ðA;� Þ.
We shall write for short

Vx;y :¼ �Vx;y; BA :¼ ð�BA;AÞ:

Remark. The upper left index notation is

chosen in order not to be mixed with the upper right

index notation of [1] which has a different meaning.

A unital non-associative algebra with involu-

tion ðA;� Þ is called a structurable algebra if the

following identity is fulfilled

½Vu;v; Vx;y� ¼ VVu;vðxÞ;y � Vx;Vv;uðyÞ;ð4Þ

for Vu;v ¼ þVu;v; Vx;y ¼ þVx;y; u; v; x; y 2 A, and we

will call ðA;� Þ an anti-structurable algebra if the

identity (4) is fulfilled for Vu;v ¼ �Vu;v; Vx;y ¼ �Vx;y.

If ðA;� Þ is structurable then, in the terminol-

ogy of [15], the triple system BA is called a

generalized Jordan triple system (abbreviated

GJTS) and by [7], BA is a GJTS of 2-nd order,

i.e. satisfies the identities (14) and (15). If ðA;� Þ is
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anti-structurable then we call BA an anti-GJTS.

Put Tx :¼ Vx;1 for x 2 A. Then, by (2),

Tx ¼ Lx þ �Rx�xð5Þ

for x 2 A. In particular, Th ¼ Lh for h 2 H.

Remarks. (i) If u ¼ h 2 H and x; y 2 A, (4)

becomes

½Lh; Vx;y� ¼ Vhx;y � Vx;hy:ð6Þ

The identity (6) written in element form is

ððhxÞyÞz� hððxyÞzÞ þ �½ððhzÞyÞx�ð7Þ
hððzyÞxÞ � ððhzÞxÞyþ hððzxÞyÞ� ¼
ðxðyhÞÞz� ðxyÞðhzÞ þ �½ðzðyhÞÞx�

ðzyÞðhxÞ þ ðzðxhÞÞy� ðzxÞðhyÞ�;

for x; y; z 2 A.

(ii) Suppose � is the identity map and hence A
is commutative. If ðA;� Þ is �-structurable then A is

a Jordan algebra. Indeed, if ðA;� Þ is structurable

then the assertion follows from [1]§1 since

charF 6¼ 3. If A is anti-structurable we may put x ¼
y ¼ h and z ¼ k in (7) and simplify using commu-

tativity to obtain hðh2kÞ ¼ h2ðhkÞ; h; k 2 A. Con-

versely, by [17]§3, any Jordan algebra satisfies (6) if

Vx;y ¼ þVx;y for x; y 2 A, hence it is structurable.

Thus, by (7), any Jordan algebra is anti-structur-

able if it satisfies

ððhxÞyÞz� hððxyÞzÞ ¼ ðxðyhÞÞz� ðxyÞðhzÞ;ð8Þ

for h; x; y; z 2 A. Using commutativity then (8) e.g.

can be written ½x; h; y�z ¼ ½xy; z; h�. Clearly, (8) is

fulfilled by an associative algebra.

(iii) If x 2 A and Txð1Þ ¼ 0 then x ¼ 0. Indeed,
if ðA;� Þ is structurable then the assertion follows

from [1]§1. If ðA;� Þ is anti-structurable then

Txð1Þ ¼ 0 implies, by (5), x ¼ 0 hence x ¼ 0.
3. Skew-alternativity. For s 2 S and h 2

H we say that ðA;� Þ is S skew-alternative if

½s; x; y� ¼ �½x; s; y� while ðA;� Þ is H skew-alternative

if ½h; x; y� ¼ �½x; h; y� for x; y 2 A. We shall remark

that if ðA;� Þ is S skew-alternative then by [1]§1,

½s; x; y� ¼ �½x; s; y� ¼ ½x; y; s�; s 2 S; x; y 2 A;

while if ðA;� Þ is H skew-alternative then by (1),

½h; x; y� ¼ �½x; h; y� ¼ ½x; y; h�; h 2 H; x; y 2 A:ð9Þ

Proposition 3.1. If ðA;� Þ is structurable,

then ðA;� Þ is S skew-alternative. If ðA;� Þ is anti-

structurable, then ðA;� Þ is H skew-alternative.

Proof. The first assertion follows from [1]

(Proposition 1). Let now ðA;� Þ be anti-structura-

ble. If h 2 H and s 2 S, putting x ¼ 1; y ¼ s in (7)

gives

½h; s; z� � 2½h; z; s� ¼ ½s; h; z� þ ½z; s; h� þ ½z; h; s�ð10Þ

for z 2 A, after changing signs. Similarly, putting

x ¼ s; y ¼ 1 in (7) gives

½h; s; z� � 2½h; z; s� ¼ ½s; h; z� � ½z; s; h� � ½z; h; s�:ð11Þ

Subtracting (11) from (10) gives ½z; s; h� þ ½z; h; s� ¼
0. If we apply � to this equation and substitute

z ¼ y we obtain

½h; s; y� ¼ �½s; h; y�; h 2 H; s 2 S; y 2 A:ð12Þ

If we put now x ¼ h; y ¼ k 2 H and z ¼ 1 in (7) then

3½h; h; k� ¼ �½k; h; h� and so by (1), �3½k; h; h� ¼
½h; h; k�. Combining these equations we obtain

½h; h; k� ¼ 0; h; k 2 H:ð13Þ

Finally, putting z ¼ h in (11) we obtain 2½h; s; h� �
½h; h; s� � ½s; h; h� ¼ 0. By (12), putting y ¼ h we

obtain ½h; s; h� ¼ �½s; h; h� and combining with the

previous identity we obtain �3½s; h; h� ¼ ½h; h; s� and
so by (1), �3½h; h; s� ¼ ½s; h; h�. Hence 9½h; h; s� ¼
½h; h; s� and therefore ½h; h; s� ¼ 0. This combined

with (13) gives ½h; h; y� ¼ 0 for h 2 H; y 2 A. If we

linearize this equation, we obtain ½h; k; y� ¼ �½k; h; y�
for h; k 2 H; y 2 A, which combined with (12)

implies that ðA;� Þ is H skew-alternative. �

Remarks. (i) If ðA;� Þ is anti-structurable

then (9) is valid symmetrically with respect to x

and y since if we put z ¼ 1 in (7) then (9) implies

½x; h; y� ¼ ½y; h; x� for h 2 H and x; y 2 A, since

charF 6¼ 2 and the assertion follows from

Proposition 3.1.

(ii) Let ðA;� Þ be a �-structurable algebra and

let DerðA;� Þ be the set of derivations of A that

commute with �. By Remark (iii) of the previous

section TA \DerðA;� Þ ¼ 0 and so we may define the

structure algebra StrðA;� Þ :¼ TA �DerðA;� Þ. This
algebra plays an important role in the structure

study of structurable algebras ([1]) and may play a

role in the structure study of anti-structurable

algebras (theory to be presented elsewhere).

4. ð�; �Þ-Freudenthal Kantor triple sys-

tems and �-Lie triple systems. Let �; � ¼ �1.

Let Uð�; �Þ be a vector space over F. A triple

system ðx; y; zÞ 7! ðxyzÞ; x; y; z 2 Uð�; �Þ, is called a

ð�; �Þ-Freudenthal Kantor triple system (abbreviat-
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ed as ð�; �Þ-FKTS) if the following identities are

valid ([23])

½La;b; Lx;y� ¼ LLa;bðxÞ;y þ �Lx;Lb;aðyÞ;ð14Þ
KKa;bðxÞ;y ¼ Ly;xKa;b � �Ka;bLx;y;ð15Þ

for a; b; x; y 2 Uð�; �Þ, where the endomorphisms La;b

and Ka;b on Uð�; �Þ are defined by

La;bðcÞ :¼ ðabcÞ; Ka;bðcÞ :¼ ðacbÞ � �ðbcaÞ;ð16Þ

where a; b; c 2 Uð�; �Þ. A triple system satisfying

only the identity (14) is called a generalized FKTS.

If we define

Sa;b :¼ La;b þ �Lb;a; Aa;b :¼ La;b � �Lb;að17Þ

then Sa;b is a derivation and Aa;b is an anti-

derivation of Uð�; �Þ, by [9].

Remark. We note that a ð�1; 1Þ-FKTS

coincides with GJTS of 2-nd order thus there

can be constructed the corresponding Lie algebra

([14,15,17,22]) while for a ð�1;�1Þ-FKTS there can

be constructed the corresponding Lie superalgebra

by the standard embedding method [5,6,9].

For � ¼ �1, a triple system ða; b; cÞ 7! ½abc�;
a; b; c 2 V is called a �-Lie triple system if the

following identities are fulfilled

½abc� ¼ ��½bac�;

½abc� þ ½bca� þ ½cab� ¼ 0;

½ab½xyz�� ¼ ½½abx�yz� þ ½x½aby�z� þ ½xy½abz��;

where a; b; x; y; z 2 V . A 1-Lie triple system is a Lie

triple system while a �1-Lie triple system is called

an anti-Lie triple system, by [10].

5. Lie (super)algebra construction.

Theorem 5.1. [9,11] Let Uð�; �Þ be an

ð�; �Þ-FKTS. If P is an endomorphism of Uð�; �Þ
such that P ðxyzÞ ¼ ðPxPyPzÞ and P 2 ¼ ���Id

then ðUð�; �Þ; ½ �Þ is a Lie triple system (for � ¼ 1)

or an anti-Lie triple system (for � ¼ �1) with

respect to the product

½xyz� ¼ ðxPyzÞ � �ðyPxzÞ þ �ðxPzyÞ � ðyPzxÞ:

Corollary 5.1. [9,11] Let Uð�; �Þ be an

ð�; �Þ-FKTS and the endomorphisms La;b and Ka;b

be defined by (16). Then the vector space T ð�; �Þ :¼
Uð�; �Þ � Uð�; �Þ is a Lie triple system (for � ¼ 1) or

an anti-Lie triple system (for � ¼ �1) with respect to

the product

a

b

 !
c

d

 !
e

f

 !" #
¼

La;d � �Lc;b �Ka;c

��Kb;d �ðLd;a � �Lb;cÞ

 !
e

f

 !
:

Remark. Then by [9,11], we can obtain

the standard embedding Lie algebra (for � ¼ 1) or

Lie superalgebra (for � ¼ �1) Lð�; �Þ ¼ DðT ð�; �Þ;
T ð�; �ÞÞ � T ð�; �Þ associated with T ð�; �Þ, where

DðT ð�; �Þ; T ð�; �ÞÞ is the set of inner derivations of

T ð�; �Þ, i.e.

DðT ð�; �Þ; T ð�; �ÞÞ :¼
La;b �Kc;d

��Ke;f �Lb;a

� �� �
span

;

T ð�; �Þ :¼
x

y

� ������x; y 2 Uð�; �Þ
( )

span

:

Then by [9,11], the standard embedding Lie

(super)algebra Lð�; �Þ is 5-graded:

Lð�; �Þ ¼ L�2 � L�1 � L0 � L1 � L2; ½Li; Lj� � Liþj;

such that

L�2 ¼
0 Kc;d

0 0

� �� �
span

; L�1 ¼ Uð�; �Þ;

L0 ¼
La;b 0

0 �Lb;a

� �� �
span

¼ fLa;bgspan:

Moreover L0 ¼ Der Uð�; �Þ � AntiDer Uð�; �Þ and

L�2 � L0 � L2 ¼DðT ð�; �Þ;T ð�; �ÞÞ, where L�1 � L1¼
T ð�; �Þ ¼ Uð�; �Þ � Uð�; �Þ, by [9,11].

6. Examples. For examples of structurable

algebras we refer to [1] and [2].

Remark. Let ðB;UÞ and ðB0; U 0Þ be two

triple systems. We say that a linear map � of

U into U 0 is a homomorphism if � satisfies

�ðBðx; y; zÞÞ ¼ B0 ð�ðxÞ; �ðyÞ; �ðzÞÞ; x; y; z 2 U .

Moreover, if � is bijective, then � is called an

isomorphism. In this case ðB;UÞ and ðB0; U 0Þ are

said to be isomorphic.

Let ðA;� Þ be a unital non-associative algebra

over F with involution � and let ðAop;� Þ denote

the opposite algebra, i.e. the algebra with multi-

plication defined by x �
op
y ¼ yx; x; y 2 A, where in

the right hand side of the equality the multiplica-

tion is done in A. The algebras ðA;� Þ and ðAop;� Þ
are isomorphic under the map x 7! x (this is true

for any algebra with involution). Let us define

�V op
x;y :¼ RRxðyÞ þ �ðLxLy � LyLxÞ;ð18Þ
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�Bop
A ðx; y; zÞ :¼ �V op

x;yðzÞ ¼ð19Þ
zðyxÞ þ �½xðyzÞ � yðxzÞ�; x; y; z 2 A:

Then A is a �-structurable algebra if and only if Aop

is a �-structurable algebra since clearly, Bop
A is the

triple system obtained from the algebra ðAop;� Þ,
and so BA and Bop

A are isomorphic under the map

x 7! x, by (3) and (19).

Example. Let Mm;nðFÞ denote the vector

space ofm� nmatrices over F and for x 2 Mm;nðFÞ
denote by x> the transposed matrix.

(i) Mm;nðFÞ with the product

fx; y; zg :¼ xy>zþ �ðzy>x� zx>yÞð20Þ

where x; y; z 2 Mm;nðFÞ, is a ð�1; �Þ-FKTS. Indeed,

it is straightforward calculation to show that the

identities (14) and (15) hold. Hence Mn;nðFÞ with

the involution x 7! x> is a �-structurable algebra.

(ii) Mm;nðCÞ with the product

fx; y; zg :¼ xy>zþ �ðzy>x� zx>yÞ

where x; y; z 2 Mm;nðCÞ, is a ð�1; �Þ-FKTS. Indeed,

it is straightforward calculation to show that the

identities (14) and (15) hold. Hence Mn;nðCÞ with

the involution x 7! x> is a �-structurable algebra.

Remark. By [12], the following construction

of Lie superalgebras is obtained by the standard

embedding method. If Uð�1;�1Þ :¼ Mm;2nðFÞ with
the product (20) then the corresponding standard

embedding Lie superalgebra is ospð2nj2mÞ (as

defined by [8]), hence the standard embedding

Lie superalgebra of the anti-structurable algebra

M2n;2nðFÞ is ospð2nj4nÞ. Similarly, if Uð�1;�1Þ :¼
Mm;2nþ1ðFÞ with the product (20) then the corre-

sponding standard embedding Lie superalgebra

is ospð2nþ 1j2mÞ (as defined by [8]), hence

the standard embedding Lie superalgebra of

the anti-structurable algebra M2nþ1;2nþ1ðFÞ is

ospð2nþ 1j4nþ 2Þ. Furthermore, the construction

of these Lie superalgebras and the correspondence

with extended Dynkin diagrams will be the subject

of study in a forthcoming paper. Moreover for the

study of the structure theory of anti-structurable

algebras the Peirce decomposition (as defined by

[16]) will be considered as future work.
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