An L_p -function determines ℓ_p

By Aoi HONDA,^{*)} Yoshiaki OKAZAKI,^{*)} and Hiroshi SATO^{**)}

(Communicated by Heisuke HIRONAKA, M.J.A., Feb. 12, 2008)

Abstract: ℓ_p is characterized by the convergence of a series defined by an L_p -function on the real line \mathbf{R} .

Key words: ℓ_p ; absolutely continuous; integrable function; *p*-integral.

1. Introduction. In this paper we shall give a new characterization of the well-known sequence space ℓ_p by using an L_p -function.

Let $f(\neq 0)$ be an L_p -function defined on the real line **R** and assume $1 \le p < +\infty$. For a sequence of real numbers $\boldsymbol{a} = \{a_k\} \in \mathbf{R}^{\infty}$, define

$$\Psi_p(\boldsymbol{a};f) := \left(\sum_k \int_{-\infty}^{+\infty} \left| f(x-a_k) - f(x) \right|^p dx \right)^{\frac{1}{p}}$$

and

$$\Lambda_p(f) := \{ \boldsymbol{a} \in \mathbf{R}^{\infty} \mid \Psi_p(\boldsymbol{a} : f) < +\infty \}.$$

We say $I_p(f) < +\infty$ if f(x) is absolutely continuous on \mathbf{R} and the *p*-integral defined by

$$I_p(f) := \int_{-\infty}^{+\infty} |f'(x)|^p dx$$

is finite.

Let g be a probability density function on **R**. Then Shepp [1] proved $\Lambda_2(\sqrt{g}) \subset \ell_2$, and also $\Lambda_2(\sqrt{g}) = \ell_2$ if and only if $I_2(\sqrt{g}) < +\infty$. This paper generalizes those results.

We shall first show $\Lambda_p(f) \subset \ell_p$ (Theorem 1). Next we shall show that $I_p(f) < +\infty$ implies $\ell_p \subset$ $\Lambda_p(f)$ for every $1 \le p < +\infty$ (Theorem 2), and that for $1 , <math>\ell_p \subset \Lambda_p(f)$ implies $I_p(f) <$ $+\infty$ (Theorem 3). In particular, for 1we have $\Lambda_p(f) = \ell_p$ if and only if $I_p(f) < +\infty$ (Corollary 4).

In Theorem 3, the case p = 1 is excluded. In fact, define $f(x) = e^{-x}$ for $x \ge 0$, and = 0 for x < 0. Then f(x) is not absolutely continuous on **R**, so that $I_1(f) < +\infty$ does not hold, but we have

©2008 The Japan Academy

 $\ell_1 = \Lambda_1(f).$

Finally, as an illuminating example, we shall estimate $\Lambda_p(f)$ explicitly for $f(x) := \sqrt{x}e^{-x}$ for $x \ge 0$, and := 0 for x < 0. Then we have $\Lambda_p(f) =$ ℓ_p , if $1 \le p < 2$, $= \ell_{2-}$, if p = 2, and $= \ell_{1+\frac{p}{2}}$, if p > 2, where

$$\ell_{2-} := \left\{ a \mid \sum_{k} a_k^2 (1 + |\log |a_k||) < +\infty \right\}.$$

2. Results. Our first result is the following theorem.

Theorem 1. Assume $1 \le p < +\infty$ and let $f(\neq 0)$ be an L_p -function on **R**. Then $\Lambda_p(f) \subset \ell_p$.

Proof. Assume that $\boldsymbol{a} = \{a_k\} \in \Lambda_p(f)$, which is equivalent to $\Psi_p(\boldsymbol{a}; f) < +\infty$. Without loss of generality, we may assume $a_k \neq 0$ for every k.

First we shall prove that $\{a_k\}$ is bounded. If there is a subsequence $\{a_{k'}\}$ such that $|a_{k'}| \to +\infty$, then $\Psi_p(\boldsymbol{a}; f) < +\infty$ implies

$$0 = \lim_{k'} \int_{-\infty}^{+\infty} \left| f(x - a_{k'}) - f(x) \right|^p dx = 2 \|f\|_{L_p}^p > 0,$$

which is a contradiction.

Next we shall prove that $\{a_k\}$ converges to 0. Assume that there exists a subsequence $a_{k'}$ such that $a_{k'} \to a_0 \neq 0$. Then we have

$$0 = \lim_{k'} \int_{-\infty}^{+\infty} \left| f(x - a_{k'}) - f(x) \right|^p dx$$

= $\int_{-\infty}^{+\infty} \left| f(x - a_0) - f(x) \right|^p dx,$

which implies $f(x - a_0) = f(x)$, a.e.(dx). This contradicts to the integrability of f(x).

Finally, we shall prove

$$\rho := \inf_k \int_{-\infty}^{+\infty} \left| \frac{f(x-a_k) - f(x)}{a_k} \right|^p dx > 0.$$

Assume that there exists a subsequence $a_{k'}$ such that

²⁰⁰⁰ Mathematics Subject Classification. Primary 26D10, 46A45; Secondary 60G30. *) Kyushu Institut

Kyushu Institute of Technology, Kawazu, Iizuka 820-

^{8502,} Japan. **) Kyushu University, Faculty of Mathematics, Hakozaki, Fukuoka 812-8581, Japan.

$$\int_{-\infty}^{+\infty} \left| \frac{f(x-a_{k'}) - f(x)}{a_{k'}} \right|^p dx \to 0.$$

Then it follows that

$$\frac{f(x-a_{k'})-f(x)}{a_{k'}} \to 0 \ in \ L_p(\mathbf{R})$$

On the other hand, $\frac{f(x-a_k)-f(x)}{a_k} \to -f'(x)$ in the distribution sence. Consequently, f(x) is absolutely continuous with f'(x) = 0, *a.e.*(dx), which implies f = 0. This is a contradiction.

Summing up the above, we have

$$\begin{split} +\infty &> \Psi_p(\boldsymbol{a};f)^p \\ &= \sum_k \int_{-\infty}^{+\infty} \left| \frac{f(x-a_k) - f(x)}{a_k} \right|^p dx |a_k|^p \\ &\ge \rho \sum_k |a_k|^p, \end{split}$$

which proves the theorem.

In the following theorems, we shall discuss the converse of the above theorem.

Theorem 2. Assume $1 \le p < +\infty$ and let $f(\ne 0)$ be an L_p -function on **R**. Then $I_p(f) < +\infty$ implies $\ell_p \subset \Lambda_p(f)$.

Proof. Assume $I_p(f) < +\infty$ and hence f(x) is absolutely continuous. Then by Fubini's theorem, we have

$$\begin{split} \Psi_p(\boldsymbol{a};f)^p &= \sum_k |a_k|^p \int_{-\infty}^{+\infty} dx \left| \int_0^1 f'(x-ta_k) dt \right|^p \\ &\leq \sum_k |a_k|^p \int_{-\infty}^{+\infty} dx \int_0^1 |f'(x-ta_k)|^p dt \\ &\leq I_p(f) \sum_k |a_k|^p, \end{split}$$

which proves the theorem.

Theorem 3. Assume $1 and let <math>f(\neq 0)$ be an L_p -function on **R**. Then $\ell_p \subset \Lambda_p(f)$ implies $I_p(f) < +\infty$.

Proof. Assume $\ell_p \subset \Lambda_p(f)$, and define

$$\psi(a) := \int_{-\infty}^{+\infty} \left| f(x-a) - f(x) \right|^p dx, \quad a \in \mathbf{R},$$

and

$$F_N(x) := rac{f(x-u_N) - f(x)}{u_N}, \ u_N := 2^{-rac{N}{p}}, \ N \ge 1.$$

Then we have

$$\sup_{N} 2^{N} \psi(u_{N}) = \sup_{N} \int_{-\infty}^{+\infty} \left| F_{N}(x) \right|^{p} dx < +\infty.$$

In fact, on the contrary, assume that for every nthere exists N(n) > n satisfying

$$2^{N(n)}\psi(u_{N(n)}) > 2^n$$

Then for the sequence

$$\pmb{a}_0 := \{\overbrace{u_{N(1)}, \cdots, u_{N(1)}}^{2^{N(1)-1}}, \cdots, \overbrace{u_{N(n)}, \cdots, u_{N(n)}}^{2^{N(n)-n}}, \cdots \},$$

we have $a_0 \in \ell_p$ and $\Psi_p(a_0; f) = +\infty$, which is a contradiction.

Since $L_p(\mathbf{R}, dx)$, 1 , is a separablereflexive Banach space, each bounded closed ballis compact and metrizable with respect to the weaktopology. Consequently, there exists a subsequence $<math>\{F_{N_j}(x)\}$ and $h(x) \in L_p(\mathbf{R}, dx)$ such that $\{F_{N_j}(x)\}$ converges weakly to h(x). Since $F_{N_j}(x) \to -f'(x)$ in the distribution sence, f(x) is absolutely continuous, f'(x) = -h(x), a.e.(dx), and we have

$$I_p(f) = \int_{-\infty}^{+\infty} |f'(x)|^p dx = \int_{-\infty}^{+\infty} |h(x)|^p dx < +\infty.$$

Theorems 1, 2 and 3 yield the corollary below.

Corollary 4. Assume $1 and let <math>f(\neq 0)$ be an L_p -function on **R**. Then we have $\ell_p = \Lambda_p(f)$ if and only if $I_p(f) < +\infty$.

Example 5. Define $f(x) := \sqrt{x}e^{-x}, x > 0$, and $:= 0, x \le 0$. Then we have

$$\Lambda_p(f) = \begin{cases} \ell_p, & 1 \le p < 2\\ \ell_{2-}, & p = 2,\\ \ell_{1+\frac{p}{2}}, & p > 2. \end{cases}$$

Proof. For $1 \le p < 2$ we have $I_p(f) < +\infty$ so that $\Lambda_p(f) = \ell_p$ by Theorem 2.

Assume $p \ge 2$ and $\boldsymbol{a} = \{a_k\} \in \Lambda_p(f)$. Then, $\boldsymbol{a} \in \ell_p$ by Theorem 1 and, since

$$\int_{-\infty}^{+\infty} |f(x-a) - f(x)|^p dx$$
$$= \int_{-\infty}^{+\infty} |f(x+a) - f(x)|^p dx$$

for every $a \in \mathbf{R}$, we have $\Psi_p(\mathbf{a}; f) = \Psi_p(|\mathbf{a}|; f)$, where $|\mathbf{a}| := \{|a_k|\}$. Therefore, without loss of generality, we may assume $a_k > 0$ for every $k \ge 1$ and $\alpha := \sup_k a_k < +\infty$.

By definition we have

$$+\infty > \Psi_p(\boldsymbol{a}; f)^p$$

= $\sum_k \int_{-\infty}^{+\infty} |f(x - a_k) - f(x)|^p dx$

$$= \int_0^{a_k} |f(x)|^p dx$$

+ $\int_0^{+\infty} |f(x+a_k) - f(x)|^p dx$
=: $J_p(\boldsymbol{a}) + K_p(\boldsymbol{a})$

so that

$$+\infty > J_p(a) = \int_0^{a_k} x^{\frac{p}{2}} e^{-px} dx \ge \frac{2e^{-p\alpha}}{p+2} \sum_k a_k^{1+\frac{p}{2}}.$$

Therefore we have $a \in \ell_{1+\frac{p}{2}}$ and $\Lambda_p(f) \subset \ell_{1+\frac{p}{2}}$. In particular, assume p = 2. Then we have $\boldsymbol{a} \in \ell_2$ and

$$\begin{split} &+\infty > K_2^{\frac{1}{p}} + \left(\sum_k a_k^2\right)^{\frac{1}{2}} \\ &\geq \left(\sum_k \int_0^{+\infty} \left|\sqrt{x + a_k} e^{-(x + a_k)} - \sqrt{x} e^{-x}\right|^2 dx\right)^{\frac{1}{2}} \\ &+ \left(\int_0^{+\infty} x e^{-2x} dx \sum_k \left|1 - e^{-2a_k}\right|^2\right)^{\frac{1}{2}} \\ &\geq \left(\sum_k \int_0^{+\infty} \left|\sqrt{x + a_k} - \sqrt{x}\right|^2 e^{-2(x + a_k)} dx\right)^{\frac{1}{2}} \\ &\geq \left(\sum_k \int_0^{+\infty} \frac{e^{-2(x + a_k)}}{\left|\sqrt{x + a_k} + \sqrt{x}\right|^2} dx a_k^2\right)^{\frac{1}{2}} \end{split}$$

$$\geq \frac{1}{2} \left(\sum_{k} \int_{0}^{+\infty} \frac{e^{-2(x+a_{k})}}{|x+a_{k}|} dx a_{k}^{2} \right)^{\frac{1}{2}} \\ \geq \frac{1}{2} \left(\sum_{k} \int_{a_{k}}^{+\infty} \frac{e^{-2x}}{x} dx a_{k}^{2} \right)^{\frac{1}{2}} \\ \geq C_{1} \left(\sum_{k} a_{k}^{2} \log \frac{1}{a_{k}} \right)^{\frac{1}{2}} - C_{2} \left(\sum_{k} a_{k}^{2} \right)^{\frac{1}{2}}$$

where C_1 and C_2 are positive constants. Consequently we have

$$\sum_{k} a_k^2 (1 + |\log|a_k||) < +\infty$$

and $\boldsymbol{a} \in \ell_{2-}$.

Conversely by similar discussions it is not difficult to show that $\boldsymbol{a} \in \ell_{1+\frac{p}{2}}$ implies $\Psi_p(\boldsymbol{a}; f) < +\infty$ for p > 2, and that $\boldsymbol{a} \in \ell_{2-}$ implies $\Psi_2(\boldsymbol{a}; f) < +\infty$ for p = 2.

Reference

[1] L. A. Shepp, Distinguishing a sequence of random variables from a translate of itself, Ann. Math. Statist. **36** (1965), 1107–1112.

No. 3]