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Abstract:

Let G,, g be the set of simple graphs of order n with given matching number 3. In

this paper, we investigate the maximal signless Laplacian spectral radius in G, g and characterize
the extremal graphs with maximal signless Laplacian spectral radius.
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1. Introduction. Let G = G(V,E) be a sim-
ple graph which has no loops or multiple edges, and
V = (vi,v9,---,v,) be the set of vertices. The
matrix A(G) = (aij),y, is called the adjacency
matriz of G, where a;; = 1 if v; and v; are adjacent
and a;; =0 otherwise. The polynomial det(x] —
A(G)) is called the characteristic polynomial of G,
denoted by Pg(z). The matrix L(G)= D(G) —
A(Q) is the Laplacian matrix of G, where D(G) =
diag(dy,ds, - -+ ,d,) is the diagonal matrix and d; is
the degree of vertex v;. The matrix Q(G) = D(G) +
A(QG) is called signless Laplacian matriz of G in [1],
or Q—matriz. For convenience, we call it signless
Laplacian. The eigenvalues of Q(G) are denoted by
W1, o,y fn. Since Q(G) is a real symmetric
matrix, we can order them g > po > -+ > .
The largest eigenvalue of A(G), Q(G) is called the
adjacent spectral radius, the signless Lapalcian
spectral radius (Q—spectral radius) of G, denoted
by p(G), u(G) respectively.

Let X = (21,29, --,2,) be an eigenvector of
the signless Laplacian Q(G) corresponding to the
eigenvalue us,1 < s <n, then

(1) Wi = d;z; + ij7
j~i
where d; is the degree of vertex v;, 1 <i < n.

Two distinct edges in a graph G are independ-
ent if they are not incident with a common vertex in
G. A set of pairwise independent edges in G is called
a matching in G. The matching number 3(G)(or just
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B, for short) of G is the cardinality of a maximum
matching of G. It is well known that B(G) <%
with equality if and only if G has a perfect
matching. Let Gy = (V},Ey) and Gy = (Va, Es) be
two graphs. The union G7|JG2 is defined to be
G1 UGQ = (‘/1 U‘/Q,E1UE2). The jOiTL G1 \/GQ of
G; and Gs is obtained from G;|JGs by joining
edges from each vertex of G to each vertex of Gs.
The components of a graph G are its maximal
connected subgraphs. Components of odd (even)
order are called the odd (even) components. For
other notations in graph theory, we follow [2].

Recently the study of the signless Laplacian
attracts some research attention. In [3], Fan et al.
studied the signless Laplacian spectral radius of
bicyclic graph with fixed order. In [4], the authors
used the smallest eigenvalue of Q(G) to characterize
some graphs. Cvetkovié¢ et al. gave a survey about
the signless Laplacian in [5]. Some other use of the
signless Laplacian can be found in [6-8].

Let G, 3 be the set of graphs of order n with
given matching number §. In this paper we shall
investigate the maximal signless Laplacian spectral
radius and characterize the graphs with maximal
signless Laplacian spectral radius in G, s.

2. Lemmas and results. In order to get our
main results, we need some technical lemmas.

Lemma 2.1 [5]. Let G be a simple connected
graph, then the largest signless Laplacian spectral
radius u(G) satisfy

min{d; + d;} < p(G) < maz{d; + d;},

where d; is the degree of v;(i=1,2,---,n). For a
connected graph G, equality holds in either of these
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inequalities if and only if G is regular or semi-
regular bipartite.

Lemma 2.2 [9]. Suppose G is a graph onn
vertices with matching 3. Then there ezists a set S
on s vertices in G such that G—S hasq=n+s —
23 odd components.

Lemma 2.3. If G is a graph with maximal
signless Laplacian spectral radius in G,g. Then
there exist positive odd numbers ni,ny,---,n, such
that

G=K.\/ (Ol K)

with s =q+2B8—nand > ! ;n, =n—s.

Proof. By Lemma 2.2, there exists a subset S
on s vertices in G such that G — S has ¢q=n+
5 — 283 odd components. Let G1,Gs,---,G, be the
odd components in G — S with |V(G;)| =n; > 1 for
1=1,2,--+q.

We claim that G — S contain no even compo-
nents, since G has maximal signless Laplacian
spectral radius in G, g. In fact, if it does not hold,
let C be the union of these even components. Then
we add some edges to make G[G,(JC] to be a
complete graph. In this way, we get a new graph G
and u(G) < u(G). Moreover, G is a graph on n
vertices with the matching number (. It is a
contradiction.

Since Q(G) is a real irreducible nonnegative
matrix, then adding edges to G shall result in
increasing w(G). So we can have G=K,\/
(U;‘Zzl Km) U

Lemma 2.4. If G* is a graph with maximal
signless Laplacian spectral radius in G,g. Then
there exists a monnegative number q such that

¢ =K, \/(K, | JE ).
g=n+s—206,n,=20—-2s+1.

Proof. By Lemma 2.3, a graph G with maximal
signless Laplacian spectral radius should satisfy
G = K;V(UL, K,,) where ¢ is a nonnegative num-
ber. Let p be the eigenvalue of Q(G), X is a
eigenvector corresponding to p. From the symmetry
of vertices in K,, and K,, we can assume the
components of X corresponding to the vertices
in K, are z;,1<i<ygq, the components of X
corresponding to the vertices in K are y. By (1),
we have
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(L—=2(ny —1) = s)zy — sy =0,
(L —2(n2 —1) — 8)zy — sy =0,

(L—2(n; —1)—s)x; —sy =0,

q
Znix,;—(u—n—s—t—?)y:().
=1

Let M}, be the coefficient matrix of system (2).
Since X # 0, the determinant |Mj| = 0. By solving
| My|, we get the following relation

q

] = T[(n— 2(m — 1) — 9)

i=1

X |p—nm+2—s i nis
—p—2mn;—1)—s

So u(G) satisfies
q

u—n—|—2—s—z s

= 0.
—pu—2mn;—1)—s

We consider the following function

p—n+2-—s n;
op)=—m—
f@6, 1) . ;u—Q(m—l)—S

Ng—1— 0 ng+0
p—2(ng1—6-1)—s p—2mn,+6-1)—s’

q—2

where > n and 0 < 6 < 2.
Taking derivative with respect to 6, we have

df(6, )
dé

=(n—s+2)
4(ng —ng_1 +26)(ng +ng_1 — p+s5—2)
(5= 201 1 — 6~ 1) — 2y +6— 1) —5)°

Then f(8, i) is strictly decreasing with respect to 6
for u > n.

Thus by Lemma 2.1, we have f(2,u(G)) <
f(0, u(G)) = 0. This means that if we increase n, by
2 and decrease n,—1 by 2 in G, the signless Laplacian
spectral radius will increase, moreover, the result-
ing graph still has matching number (.

By repeating the above procedure, we can

< 0.

complete the proof. O
Now we present our main result.
Theorem 2.5. Let G € G, 3 be any graph on

n vertices with matching number 3. Then we have
(1). If n=28, or 26+ 1, then u(G) < p(K.),
with equality if and only if G =2 K,;

(2). If28+2 <n < 22 then u(G) < 4B, with
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equality if and only if G = Kog1 | Ky—2p-1;

(3). If n= MT+3, then p(G) < 48, with equality
if and only if G = Kg\/ K,_3, or G= Kys1J
Kn, 26—15

4). If n> ‘)ﬁ+3, then p(GQ) <
V(i —2+28)7 — 85 +89),
only if G =2 K\ K,_p.

Proof. From the proof of Lemma 2.4, we know
that pu(G*) satisfy g(u) = 0, where

g(pw) =(p—n+2—=s)(p—1s)(p—48+3s)
—(n+s—28-1)s(u—48+ 3s)
—(u—9)s(28—2s5+1).
It is easy to see that
g(s) =4s(f—s)(n+s—28—-1) >0,
9(48 —3s) = —45( —-s5)(28—-2s+1) <0,
g(+00) >
g(—o0) < 0.
Hence the three roots of g(u) =0 lie in three
intervals (—o0,s), (s,48 —3s), (40 — 3s,+00). So
we conclude that g(p) =0 has exactly one root
> 408 — 3s.
(1). If n =20, or 28+ 1, it is easy to know that
w(G) < u(K,,) with equality if and only if G & K.
(2). If 286+2<n< 5'3;3, by Lemma 2.4, we
need just to verify that u(G*) < u(H), where H =
Ks\/ K,_5. A direct computation shows that u(H)
satisfy h(u) = 0, where

T(n—2+28+
with equality if and

h(p) = p* = (n— 2+ 2B)u+ 23* — 26.
Moreover, if n < °ﬁ+3 w(H) < p(Kopi1 U
Kn—2[}—l) = 4ﬂ

A direct computation shows that

(b= 48)(1* + (=n+ 2+ s)p

+5(128 — 3n — 4s + 4))

+25(206% + 108 — 4503 — 5 — s> — 6n3).

So we can easily verify

g(48) = 25(203% 4+ 108 — 456 — s — 5° — 6n0)

> 25(206% + 108 — 453 — s — s> — 154> — 93)
=25(50* + f—4sf — s — 5°)
=2s(8—5)(56+s+1)>0.

This means that u(G*) <4p. If u(G*) =44, then
s =0. From Lemma 2.4, we have G* =~ H.
3. If n= ‘)ﬁ;?’, we  have

2s(8—s)(58+ s+ 1) >0, hence, u(G*) < 40.

g(p) =

9(4p) =
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If uw(G*) =43, then s=0, or =3, which
implies our result.

(4). If n > 223 from the proof of (1), it is easy
to see that u(H) batlsﬁes

h(p) = p? = (n =2+ 2B)p +26° =26 =0,
where H = K3\/ K,,_g. Moreover, we know that

p(H) = 3 (n— 2+ 25)

+\/(n—2+2ﬁ)2—852+86>4ﬂ.
So we have
9(p) = h(p) (k=28 +s)
+(B—s)2n—2+4s—68)u
+ (B —5)(25 — 653 — 403 + 46 + 25%).

Hence we can verify

g(u(H)) = (8 = s)(2n — 2+ 4s — 68)u(H)
+ (B —5)(25 — 658 — 40 + 457 + 25°)
> (B—9)[(2n—2+45s—608)48 + 25
— 650 — 40 + 467 + 257
>(B—3s)[(50+3—2+4s—60)45 + 2s
— 650 — 40 + 467 + 257
= (B —5)(1083 + 25 + 25?)
=2s(8—s5)(B58+s+1)
> 0.

This means that u(G*) < u(H).

If u(G*) = p(H), then 8 = s, which implies our
result. ]
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