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Modular relation interpretation of the series involving

the Riemann zeta values
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Abstract:

We shall locate Katsurada’s results, in our framework of modular relations, on

two series involving the values of the Riemann zeta-function, which are decisive generalizations
of earleir results of Chowla and Hawkins and of Buschman and Srivastava et al. We shall
elucidate these results as an improper or a proper modular relation according as the involved
parameter v exerts effects on the series or not, eventually indicating that they are disguised form
of modular relations as given by Theorem 4 in §3.
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1. Introduction and statement of results.
Let v denote a complex parameter and for x > 0, let

W me= X (D=,

n>Rev+1 n

where ((s) is the Riemann zeta-function defined by
(11) below, () is the binomial coefficient %, with
(x), indicating the falling factorial (), = x(x —
1)---(x —n+1) and the sum is extended over n €
NU{0},n >Rev+1. Hence if Rev+1 <0, the
parameter has no effect on the summation, which
we call the proper case.

Chowla and Hawkins [2] considered the termi-
nating case of (1) for x € N and obtained an
asymptotic formula, which was later sharpened by
Verma [12].

Katsurada [6] (cf. also [5]) has taken the
decisive step of generalizing all the previous inves-
tigations from the point of view of the Mellin-
Barnes type of integrals (for a general theory cf. [7])
and obtained a confluent hypergeometric series
expansion, which in turn gives rise to an asymptotic
formula for H,(x).

In this note we shall locate Katsurada’s results
in the modular relation framework, our main results
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being Theorems 3 and 4 in §3 below. However, to
make the process more accessible, we shall elucidate
two theorems of Katsurada from the standpoint of
the proper and improper modular relations, proving
eventually that Katsurada’s theorem [6, Theorem
4.1] properly formulated is really a modular relation
as furnished by Theorem 3 below.

Theorem 1. For all x>|Rev|+2 and
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and where ¥(a,c; z) is the confluent hypergeometric
function defined by
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for Rea>0, -mr<¢ <7 and —5<¢ptargz<j
[3,p. 256, 6.5 (3)].

In the case v € Z, v > —1, the first term on the
right of (2) is to be replaced by

© (7)) (Fe-nrn-m.).
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where 7y is Euler’s constant and H,.1 is the (v + 1)-
th harmonic number
1/+1

1/+1 § -

Remark 1. In the case Rev+12>0, the
parameter v affects the series and we are to shift
the first [Rev + 1] partial sum to the right so as to
indicate that these {(n — v)’s are not the series (11)
but its analytic continuation:

M+ 1)IT'(-v—-1)
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(6) [Rev+1] -
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for v ¢ Z; for v € Z we are to replace the first term
by (5). These are the results stated by Katsurada
[6, Theorem 4.1], which we refer to as the improper
modular relation (cf. §3 for more elucidation).
They do not look like at a first glance a modular
relation as developed in [4,11] but even in the case
Rev+1 > 0, stated in the form of our Theorem 1, it
is a modular relation as furnished by Theorem 3
below.

Katsurada [6] also obtained a K-Bessel series
expansion for the power series

n Gw= Y Y

|
n>Rev+1 n

z"{(n —v),

whose special cases and asymptotic formulas were
studied first by Chowla and Hawkins, and later by
Buschman and Srivastava [1] and [10, p. 141] among
others (for related references, see [6,p. 16, 1. 8]).

We may elucidate Katsurada’s results
[6, Theorems 3.1 and 3.2] in much the same light
as with Theorem 1 above.

Theorem 2. For z>2 and v+#-1,0,1,

2---, we have
7I<' n )
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2. Proofs.
Proof of Theorem 1. Our proof depends on
evaluating the integral

. _ 1 / Pz +1)T(—s)

H, () F(x4+1-2s)

w0 5 ¢(s —v)ds,

(0)
Rev < ¢ < [Rev+2].

First consider the proper case, i.e. Rev +1 <0
and suppose that v ¢ Z and Rev + 1 < ¢ < 0. Then
we may use the absolutely convergent series
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to obtain
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where G} is the Meijer G-function (cf. [3,p. 202—

222] and [9]). By the well-known properties of
the G-function,
rz+1
0
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whence by changing the order of summation, we
deduce that

10 B =Y (] )=

Now we shift the line of integration to o=
oo, —% < o0yp < Rev+1 < ¢, encountering a simple
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pole at s = v 4 1 with residue

MNz+1)T(-v-1)
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to obtain
(5) ) =D ),
with
()
16)  —p@+1) % / %4(5 — V) ds.

(00)

Recalling the functional equation
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and transforming the gamma factor slightly as
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Where we used the reciprocity relation and the
duplication formula, we obtain
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by Euler’s formula. Hence it follows that
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Now the G-function part becomes
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by Lemma 1 below, whence
(19) 7:(1,(36) =H,(z),

where H,(x) is defined in (3).

We turn to the improper case, where Rev +
1 >0, in which case, the integral in (12) is not a
G-function. First assume that v¢ Z. We are to
shift the path to o = oy, —% < 09 < 0. In doing so,

we encounter simple poles at s =0, -, [Rev + 1],
so that
1 ['(—s) .
— | ————n"%ds
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The first term on the right of (20) becomes
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while the second term is calculated in (13). Hence
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Substituting (21) in (12), we deduce that

Hy(x)=H,(z)= Y (_1)k<i> inu—k

k>[Re v+1] n=0

= > v )en-n,
k>[Rev+1]
which is [6, (4.4)].

As in the proper case, we shift the line of
integration to o = oy, f% < 09 <0, encountering
simple poles at s =0,---,[Rev + 1] and v+ 1. The
sum of residues at these poles is

[Rev+1] T F($+ 1) F(—I/— 1)
Nk _y )
2, 1 (k)“k A P
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Hence, in place of (15), we obtain
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where H,,(z) is defined in the first instance by (16) is
equal to H,(z) by (19), and (22) is the same as (2).

In the case v=-1,0,1,---, the treatment
remains the same except for the evaluation of
the residues at the double pole s =v+ 1, whose
residue is given by (5). This completes the proof of
Theorem 1.

We have appealed in the proof to

Lemma 1. We have

3 G?S(z

a
) =e 2V(a—c,b—c+1;2)

)

and in particular
l14+a-5

(24) Glz(z 0.1 b ) =e “U(a,b;2).

Proof. We may prove (23) via the Whittaker
function W, ,, [3,p. 264]. [3,p. 216, (6)] reads

a
G?S(z b )
(25) e

1
§(b+(’ 1) 22”7
€ FA+b+e)—

%(b—c)(z)’
while [3, (2), p. 264] reads

(26) Wiu(2) = €320 W (0, 7:2)
where
1
a:§—/$+,u,7:2u+1.
Choosing a =a —¢,7v =b— c+ 1, we conclude
(23).

Remark 2. Katsurada gave an independent
proof of (18) using (4), but a more general form (23)
is already available in Erdélyi as indicated above.
Indeed, (18) can be found in Prudnikov [8,p. 716,
8.4, 46.7].

Proof of Theorem 2. The proof goes on the
same lines as those of the proof of Theorem 1, and
we shall only point out the substantial ingredients.

Correspondingly to (10), we consider the in-
tegral
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where >0, and Rev+1<¢<0 or Rev+1<
¢ < [Rev + 2], according to the proper and improp-
er case. The formula corresponding to (14),

> T
x) = E mYe m
m=1

immediately follows from (11) in the proper case.
Correspondingly to (16), we consider

~ 1
G,(x) = — / D(—s)((s — v)2’ds,
27
(00)
where oy satisfies f% <oyg<Rev+1<0or f% <
0 < 0 according to the proper and improper case.

As in the proof of Theorem 1, we have
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whence by [3,p. 216, (4)], we have, as in the proof
of Theorem 1,
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This completes the proof.

3. General results. Katsurada’s Theorem 1
is a special case of the following more general
theorem, which in turn is a simple corollary of
Theorem 4:

Theorem 3.

n — l/ x"
1 - b 77:O
0
_ Z{ “2mkE (1 — b, v + 2; 2mik)
(31) -
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s Sl S
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Remark 3. We note that the left-hand side
member of Theorem 3 was already mentioned by
Katsurada who,

however, went on into another

direction.
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Theorem 4.
(32)
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where H)'" indicates the Fox H-function (cf. [9,11])
Theorem 3 follows from Theorem 4 by specify-
ing the parameters. Details of this and elucidaton of
Thereom 2 together with other results will appear
elsewhere.
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