A note on normality of meromorphic functions

By Jianming Chang
Department of Mathematics, Changshu Institute of Technology, Changshu, Jiangsu 215500, P. R. China

(Communicated by Heisuke Hironaka, m.J.a., April 12, 2007)

Abstract

Let \mathcal{F} be a family of all functions f meromorphic in a domain $D \subset \mathbf{C}$, for which, all zeros have multiplicity at least k, and $f(z)=0 \Leftrightarrow f^{(k)}(z)=1 \Rightarrow\left|f^{(k+1)}(z)\right| \leq h$, where $k \in \mathbf{N}$ and $h \in \mathbf{R}^{+}$are given. Examples show that \mathcal{F} is not normal in general (at least for $k=1$ or $k=2$). The example we give for $k=1$ shows that a recent result of Y . Xu [5] is not correct. However, we prove that for $k \neq 2$, there exists a positive integer $K \in \mathbf{N}$ such that the subfamily $\mathcal{G}=\{f \in \mathcal{F}$: all possible poles of f in D have multiplicity at least $K\}$ of \mathcal{F} is normal. This generalizes our result in [1]. The case $k=2$ is also considered.

Key words: Holomorphic functions, meromorphic functions, normal family.

1. Introduction and main results. Let $D \subset \mathbf{C}$ be a domain and \mathcal{F} a family of meromorphic functions in $D . \mathcal{F}$ is said to be normal in D in the sense of Montel, if each sequence $\left\{f_{n}\right\} \subset \mathcal{F}$ contains a subsequence which converges spherically locally uniformly in D to a meromorphic function or ∞. See $[3,6]$.

The following result is due to X. C. Pang and L. Zalcman [4].

Theorem A. Let $k \in \boldsymbol{N}$ and $h \in \boldsymbol{R}^{+}$, let \mathcal{F} be a family of functions meromorphic in a domain $D \subset C$ such that for any $f \in \mathcal{F}$, all zeros of f have multiplicity at least k, and $f(z)=0 \Leftrightarrow f^{(k)}(z)=$ $1 \Rightarrow 0<\left|f^{(k+1)}(z)\right| \leq h$. Then \mathcal{F} is a normal family in D.

In [4], for $k=2$, the authors gave an example to show that in Theorem A, the condition $f^{(k+1)}(z)$ is non-zero at the 1-points of $f^{(k)}(z)$ can not be dropped even if \mathcal{F} is a family of holomorphic functions. Recently, Y. Xu [5] said that for $k=1$, this condition can be removed. We point out that Y. Xu's result is not correct. See the following example.

Example 1. For every $n \in \mathbf{N}$, let

$$
f_{n}(z)=\frac{2\left(e^{n z}+1\right)}{n\left(e^{n z}-1\right)}
$$

Then, for any f_{n}, we have
$f_{n}^{\prime}(z)-1=-\frac{\left(e^{n z}+1\right)^{2}}{\left(e^{n z}-1\right)^{2}}, f_{n}^{\prime \prime}(z)-1=\frac{4 n e^{n z}\left(e^{n z}+1\right)}{\left(e^{n z}-1\right)^{3}}$, so that f_{n} satisfies $f_{n}(z)=0 \Leftrightarrow f_{n}^{\prime}(z)=1 \Rightarrow$ $f_{n}^{\prime \prime}(z)=0$.

[^0]However, the family $\mathcal{F}=\left\{f_{n}\right\}$ is not normal in C.

If the family \mathcal{F} in Theorem A consists of holomorphic functions, then the condition $f^{(k+1)}(z)$ is non-zero at the 1-points of $f^{(k)}(z)$ can be dropped for $k \neq 2$. Indeed, we have proved in [1] the following two results.

Theorem B. Let $k \in \boldsymbol{N}$ and $h \in \boldsymbol{R}^{+}$, let \mathcal{F} be a family of functions holomorphic in a domain $D \subset C$ such that for any $f \in \mathcal{F}$, all zeros of f have multiplicity at least k, and $f(z)=0 \Rightarrow f^{(k)}(z)=$ $1 \Rightarrow\left|f^{(k+1)}(z)\right| \leq h$. For the case $k=2$, suppose in addition that there exists an even positive integer $s \geq 4$ such that for any $f \in \mathcal{F}, f^{(k)}(z)=1 \Rightarrow$ $\left|f^{(s)}(z)\right| \leq h$. Then \mathcal{F} is a normal family in D.

Theorem C. Let $k \in \boldsymbol{N}$ with $k \geq 2$ and $h \in$ \boldsymbol{R}^{+}, let \mathcal{F} be a family of functions holomorphic in a domain $D \subset C$ such that for any $f \in \mathcal{F}, f(z)=$ $0 \Rightarrow f^{\prime}(z)=1 \Rightarrow\left|f^{(k)}(z)\right| \leq h$. Then \mathcal{F} is a normal family in D.

In this note, we prove that Theorem B and Theorem C are also valid if the family consists of meromorphic functions, all of whose poles have sufficiently large multiplicity.

Theorem 1. Let $k \in \boldsymbol{N}$ and $h \in \boldsymbol{R}^{+}$, let \mathcal{F} be a family of all functions f meromorphic in a domain $D \subset \boldsymbol{C}$, for which, all zeros have multiplicity at least k, and $f(z)=0 \Rightarrow f^{(k)}(z)=1 \Rightarrow\left|f^{(k+1)}(z)\right| \leq h$. For the case $k=2$, suppose in addition that there exists an even positive integer $s \geq 4$ such that for any $f \in \mathcal{F}$, $f^{(k)}(z)=1 \Rightarrow\left|f^{(s)}(z)\right| \leq h$. Then there exists an integer $K \in \boldsymbol{N}$ such that the subfamily $\mathcal{G}_{K}=\{f \in \mathcal{F}$:
all possible poles of f in D have multiplicity at least $K\}$ multiplicity at least k, such that $g^{\#}(\zeta) \leq g^{\#}(0)=$ of \mathcal{F} is normal in D.

In Theorem 1 , when $k=2$, the additional condition is really necessary.

Example 2 [4]. For every $n \in \mathbf{N}$, let

$$
f_{n}(z)=\frac{1}{2 n^{2}}\left(e^{n z}+e^{-n z}-2\right)=\frac{e^{-n z}}{2 n^{2}}\left(e^{n z}-1\right)^{2}
$$

Then for any positive integer $j \in \mathbf{N}$,

$$
f_{n}^{(j)}(z)=\frac{1}{2} n^{j-2}\left(e^{n z}+(-1)^{j} e^{-n z}\right)
$$

Thus one can see that all zeros of f_{n} have multiplicity at least $2, f_{n}(z)=0 \Rightarrow f_{n}^{\prime \prime}(z)=1$ and $f_{n}^{\prime \prime}(z)=1 \Rightarrow$ $f^{(s)}(z)=0$ for any odd positive integer s.

However, the family $\left\{f_{n}\right\}$ is not normal at $z=0$.
Theorem 2. Let $k \in \boldsymbol{N}$ with $k \geq 2$ and $h \in \boldsymbol{R}^{+}$, let \mathcal{F} be a family of all functions f meromorphic in a domain $D \subset \boldsymbol{C}$, for which, $f(z)=0 \Rightarrow$ $f^{\prime}(z)=1 \Rightarrow\left|f^{(k)}(z)\right| \leq h$. Then there exists an integer $K \in N$ such that the subfamily $\mathcal{G}_{K}=\{f \in \mathcal{F}$: all possible poles of f in D have multiplicity at least $K\}$ of \mathcal{F} is normal in D.

By the present examples, the integer K must be larger than 1 . We conjecture that one may take $K=2$.
2. Lemmas. We require some known results. The first two are the well-known Marty's theorem and Zalcman's Lemma respectively.

Lemma $\mathbf{1}$ (see $[3,6])$. Let \mathcal{F} be a family of functions meromorphic in D. Then \mathcal{F} is normal in D if and only if for any compact subset E of D, there exists a positive number $M=M(E)$ such that for any $z \in E$ and any $f \in \mathcal{F}$,

$$
f^{\#}(z)=\frac{\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}} \leq M
$$

Lemma 2 [4]. Let \mathcal{F} be a family of functions meromorphic in the unit disk $D=\{z:|z|<1\}$, all of whose zeros have multiplicity at least k, and suppose that there exists $A \geq 1$ such that $\left|f^{(k)}(z)\right| \leq$ A whenever $f(z)=0$. Then if \mathcal{F} is not normal, there exist, for each $0 \leq \alpha \leq k$,
a) a number $0<r<1$;
b) points $z_{n},\left|z_{n}\right|<r$;
c) functions $f_{n} \in \mathcal{F}$; and
d) positive numbers $\rho_{n} \rightarrow 0$
such that $\rho_{n}^{-\alpha} f_{n}\left(z_{n}+\rho_{n} \zeta\right)=g_{n}(\zeta) \rightarrow g(\zeta)$ spherically locally uniformly, where g is a nonconstant meromorphic function on \boldsymbol{C}, all of whose zeros have
$k A+1$.

Lemma 3 [2]. Let f be an entire function. If there exists a positive number M such that $f^{\#}(z) \leq$ M for any $z \in \boldsymbol{C}$, then f is of order at most one.

Lemma $4[1]$. Let $k \in \boldsymbol{N}$, let f be a nonconstant entire function of order at most one. Suppose all zeros of f have multiplicity at least k, and $f(z)=0 \Rightarrow f^{(k)}(z)=1 \Rightarrow f^{(k+1)}(z)=0$. For the case $k=2$, suppose in addition that there exists an even positive integer $s \geq 4$ such that $f^{(k)}(z)=$ $1 \Rightarrow f^{(s)}(z)=0$. Then f must be of the form $f(z)=\frac{1}{k!}\left(z-z_{0}\right)^{k}$, where z_{0} is a constant.

Lemma 5 [1]. Let $k \in \boldsymbol{N}$ with $k \geq 2$, let f be a nonconstant entire function of order at most one. Suppose that $f(z)=0 \Rightarrow f^{\prime}(z)=1 \Rightarrow f^{(k)}(z)=0$. Then f must be of the form $f(z)=z-z_{0}$, where z_{0} is a constant.

Remark. In Lemma 4 (Lemma 5), the condition that f is of order at most one can be dropped, since it follows from the other conditions. Indeed, under the other conditions, by Theorem B (Theorem \mathbf{C}), the corresponding family $\{f(z+\zeta)\}_{z \in \mathbf{C}}$ is normal at $\zeta=0$, and then by Marty's theorem, the spherical derivative $f^{\#}$ of f is uniformly bounded on \mathbf{C}, and hence by Lemma $3, f$ is of order at most one.
3. Proofs of Theorem 1 and Theorem 2. Since the proofs of Theorem 1 and Theorem 2 are similar to each other, we only give the proof of Theorem 1.

Proof of Theorem 1. Suppose for any $K \in$ \mathbf{N}, the family \mathcal{G}_{K} is not normal at some point $z_{K} \in$ D. Then by Zalcman's Lemma (Lemma 2), there exist points $z_{n} \rightarrow z_{K}$, positive numbers $\rho_{n} \rightarrow 0$ and functions $f_{n} \in \mathcal{G}_{K}$ such that

$$
g_{n}(\zeta)=\rho_{n}^{-k} f_{n}\left(z_{n}+\rho_{n} \zeta\right) \rightarrow G_{k}(\zeta)
$$

spherically locally uniformly, where G_{K} is a nonconstant meromorphic function on \mathbf{C}, all of whose zeros have multiplicity at least k and all of whose poles have multiplicity at least K, such that $G_{K}^{\#}(\zeta) \leq$ $G_{K}^{\#}(0)=k+1$.

Using the same argument in [1, P.334-336], we can see that

$$
G_{K}(\zeta)=0 \Rightarrow G_{K}^{(k)}(\zeta)=1 \Rightarrow G_{K}^{(k+1)}(\zeta)=0
$$

with additional property $G_{K}^{(k)}(\zeta)=1 \Rightarrow G_{K}^{(s)}(\zeta)=0$ for the case $k=2$.

Now we consider the family $\left\{G_{K}\right\}_{K \in \mathbf{N}}$. Since $G^{\#}(\zeta) \leq k+1$, by Marty's theorem, it is normal in
the whole plane \mathbf{C}. So there exists a subsequence of $\left\{G_{K}\right\}_{K \in \mathbf{N}}$, say itself without any loss of generality, such that $\left\{G_{K}\right\}_{K \in \mathbf{N}}$ converges spherically locally uniformly in \mathbf{C} to a meromorphic function G or ∞.

By $G_{K}^{\#}(\zeta) \leq G_{K}^{\#}(0)=k+1$, we see that $G_{K} \rightarrow G$ and $G^{\#}(\zeta) \leq G^{\#}(0)=k+1$. Further we can see that G is a nonconstant entire function, all zeros of G have multiplicity at least k, and $G(\zeta)=0 \Rightarrow G^{(k)}(\zeta)=1 \Rightarrow G^{(k+1)}(\zeta)=0$ with additional property $G^{(k)}(\zeta)=1 \Rightarrow G^{(s)}(\zeta)=0$ for the case $k=2$. Thus by Lemma 4, we have $G(\zeta)=\frac{1}{k!}\left(\zeta-\zeta_{0}\right)^{k}$, where ζ_{0} is a constant. Simple calculation shows that $G^{\#}(0) \leq \frac{k}{2}+1$, which contradicts $G^{\#}(0)=k+1$.

The proof of Theorem 1 is completed.
Acknowledgements. This work was supported by the NNSF of China (Grant No. 10471065 and No 10671073) and by the Fred and Barbara Kort Sino-Israel Post Doctoral Fellowship Program
at Bar-Ilan University.

References

[1] J. Chang, M. Fang and L. Zalcman, Normal families of holomorphic functions, Illinois J. Math. 48 (2004), no. 1, 319-337.
[2] J. Clunie and W. K. Hayman, The spherical derivative of integral and meromorphic functions, Comment. Math. Helv. 40 (1966), 117148.
[3] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
[4] X. Pang and L. Zalcman, Normal families and shared values, Bull. London Math. Soc. 32 (2000), no. 3, 325-331.
[5] Y. Xu, A note on a result of Pang and Zalcman, Houston J. Math. 32 (2006), no. 3, 955-959. (Electronic).
[6] L. Yang, Value distribution theory, Translated and revised from the 1982 Chinese original, Springer, Berlin, 1993.

[^0]: 2000 Mathematics Subject Classiffcation. Primary 30D45.

