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Abstract: Let G be a separable locally compact unimodular group of type I, Ĝ be its dual,
p̂ is a measurable field of, not necessary bounded, operators on Ĝ such that p̂(π) is self-adjoint,
p̂(π) ≥ I for µ−almost all π ∈ Ĝ, and

Ap̂(G) = {f(x) :=
∫
�G

Tr[f̂(π)π(x)−1 ]dµ(π), f̂ ∈ L1(Ĝ), ‖f‖p̂ =
∫
�G

Tr|p̂(π)f̂(π)|dµ(π) < ∞}.

We show that Ap̂(G) is a Banach space endowed with the norm ‖f‖p̂, and we generalize this result
to the matricial group G = Gnm, m ≥ n, of a local field.

Key words: Banach spaces, Beurling-Domar weight, Fourier transform and cotransform on
nonabelian groups, uncertainty principle.

Introduction. Domar [2] gave a natural gen-
eralization of the Beurling algebras to any locally
compact Abelian group (LCA) G, where the weight
is a measurable function p̂(x̂) on Ĝ, the dual group
of G, bounded on every compact set and satisfying:

∀x̂, ŷ ∈ Ĝ, p̂(x̂) ≥ 1, p̂(x̂ + ŷ) ≤ p̂(x̂)p̂(ŷ).

The associated Banach algebra is:

Fp̂(G) = {f(x) :=
∫
�G

f̂(x̂)(x, x̂)dx̂, x ∈ G, f̂

∈ L1(Ĝ),
∫
�G

|p̂(x̂)f̂(x̂)|dx̂ < ∞},

endowed with the norm ‖f‖p̂ =
∫
�G
|p̂(x̂)f̂(x̂)|dx̂. In

fact, the essential characterization given by Domar
[2, p. 18] for this algebra is the following: Fp̂(G) is
of type F (G) (see [2] or [8, p. 15 ]) if and only if∑∞

1
log[p̂(nx̂0)]

n2 < ∞, which is the case if and only if
for every neighborhood V of the identity in G, there
exists a function in Fp̂(G) which vanishes outside V

(that is to say Fp̂(G) is of non-quasianalytic type
when G = R).

If G is not Abelian, Ĝ, the dual of G, is no more
a group and the natural extension (from the point
of view that the weight must be defined on Ĝ) of
Domar’s results to G is a very difficult problem. We
generalize here the space Fp̂(G), as Banach space, to
a separable locally compact unimodular type I group
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G and to some nonunimodular groups. Indeed, Let
p̂ be a measurable field of, not necessary bounded,
operators on Ĝ such that p̂(π) is self-adjoint, p̂(π) ≥
I for µ−almost all π ∈ Ĝ, and

Ap̂(G) = {f(x) :=
∫
�G

Tr[f̂(π)π(x)−1]dµ(π),

f̂ ∈ L1(Ĝ), ‖f‖p̂ =
∫
�G

Tr|p̂(π)f̂ (π)|dµ(π) < ∞}.

We establish that (Ap̂(G), ‖.‖p̂) is a Banach space,
and then we generalize this result to the matricial
group G = Gnm, m ≥ n, of a local field, which is not
unimodular. Finally we can raise the following open
problem: is Ap̂(G) a Banach algebra with respect to
pointwise multiplication for some unbounded weight
p̂ ?

1. Separable locally compact unimodu-
lar type I groups. Let G be a separable locally
compact unimodular group, then G is of type I if and
only if G is postliminary by [1, th., p. 168], which
is the case if and only if (by [1, p. 271]) for every
irreducible unitary representation π of G, the norm
adherence of π(L1(G)) contains the space of compact
operators on Hπ, the space of representation of π.

Henceforth G denotes a separable locally com-
pact unimodular postliminary group (SLCUP). Let
A(G) := {u = f ∗ g̃, f, g ∈ L2(G), g̃ = g(x−1)}, en-
dowed with the norm ‖u‖ = inf{‖f‖2‖g‖2, u = f∗g̃},
be its Fourier algebra, Ĝ be its dual, i.e., the set of
(equivalence classes of) irreducible unitary represen-
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tations, and µ be the Plancherel measure on Ĝ as-
sociated with the Haar measure of G [1, p. 328]. If
f ∈ L1(G), f̂ denotes the usual Fourier transform
of f , f̂(π) =

∫
G

f(x)π(x)dx, and if f ∈ A(G), f̂

denotes the only element of L1(Ĝ) such that f(x) =∫
�G

Tr[f̂(π)π(x)−1 ]dµ(π) (which is possible according
to [7, th. 3.1, p. 217]). Note that these two nota-
tions coincide when f ∈ A(G)∩L1(G). The following
result generalizes its Abelian analogue [6, th. 8, p.
377] and gives again another proof easier.

Proposition 1. Let f ∈ L1(G), then f̂ ∈
L2(Ĝ) if and only if f ∈ L2(G).

Proof. In view of Plancherel theorem [7, th.
2.1, p. 213], we have the sufficiency. We obtain the
necessity by applying Parseval theorem [7, th. 2.3,
p. 214] and [7, cor. 2.4, p. 216 ].

Theorem 2. Let p̂ be a measurable field of, not
necessary bounded, operators on Ĝ such that p̂(π) is
self-adjoint, p̂(π) ≥ I for µ−almost all π ∈ Ĝ, and

Ap̂(G) = {f(x) :=
∫
�G

Tr[f̂(π)π(x)−1]dµ(π),

f̂ ∈ L1(Ĝ), ‖f‖p̂ =
∫
�G

Tr|p̂(π)f̂ (π)|dµ(π) < ∞}.

Then Ap̂(G) is a Banach space endowed with the
norm ‖f‖p̂.

Proof. According to [8, cor. 22, p. 41], for each
π ∈ Ĝ such that p̂(π) ≥ I, we have

Tr|f̂(π)| ≤ Tr|p̂(π)f̂(π)|,(1)

from which follows that ‖f‖p̂ is a norm on Ap̂(G).
Establish that (Ap̂(G), ‖.‖p̂) is complete. Let fn be a
Cauchy sequence in Ap̂(G), then, by exceeding some
rank n0, we have

‖p̂f̂n − p̂f̂m‖1 =
∫
�G

Tr|p̂(π)f̂n(π) − p̂(π)f̂m(π)|dµ(π)

= ‖fn − fm‖p̂ ≤ ε,

which implies that p̂f̂n is a Cauchy sequence in
L1(Ĝ), thus there exists ĝ ∈ L1(Ĝ) such that p̂f̂n −→
ĝ in L1(Ĝ). It suffices to show that there exists
f ∈ A(G) such that p̂f̂ = ĝ. In fact, from (1) follows
that

‖f̂n − f̂m‖1 :=
∫
�G

Tr|f̂n(π) − f̂m(π)|dµ(π)

≤
∫
�G

Tr|p̂f̂n(π) − p̂f̂m(π)|dµ(π) ≤ ε.

Hence f̂n is a Cauchy sequence in L1(Ĝ). It con-
verges to F ∈ L1(Ĝ) and thus, in view of [7, th. 3.1,

p. 217], there exists f ∈ A(G) such that f̂ = F .
Show that p̂f̂ = ĝ. Indeed, since (‖.‖∞ denotes the
uniform norm (operator norm) in L∞(Hπ) the space
of bounded linear operators on Hπ)∫

�G

‖f̂n(π) − f̂(π)‖∞dµ(π)

≤
∫
�G

Tr|f̂n(π) − f̂(π)|dµ(π) −→ 0

and ∫
�G

‖p̂f̂n(π) − ĝ(π)‖∞dµ(π)

≤
∫
�G

Tr|p̂f̂n(π) − ĝ(π)|dµ(π) −→ 0,

then, according to Riesz theorem [4, p. 156], there
exists a subsequence f̂nk such that

‖f̂nk(π) − f̂(π)‖∞ −→ 0,

and ‖p̂f̂nk(π) − ĝ(π)‖∞ −→ 0,

for µ−almost all π ∈ Ĝ. It follows that

< f̂nk(π)y, p̂(π)f̂nk(π)y >−→< f̂(π)y, ĝ(π)y >,

for all y ∈ Hπ and µ−almost all π ∈ Ĝ. Now
G([(p̂(π)]∗), the graph of [(p̂(π)]∗, is closed for
µ−almost all π ∈ Ĝ (see for example [8, rq., p.
46], with T = p̂(π)). Then G(p̂(π)) = G([(p̂(π)]∗) is
closed for µ−almost all π ∈ Ĝ, thus (f̂(π)y, ĝ(π)y) ∈
G(p̂(π)) and p̂(π)f̂ (π)y = ĝ(π)y for all y ∈ Hπ and
for µ−almost all π ∈ Ĝ. Consequently p̂f̂ = ĝ.

Problem 1 (open problem). Is the Banach
space Ap̂(G) a Banach algebra with respect to point-
wise multiplication for some unbounded weight p̂ ?

Remark. The dictionary which enables us to
pass over from Fp̂(G) to Ap̂(G) is the following

Fp̂(G) = {f ∈ A(G),
∫
�G

|p̂(x̂)f̂(x̂)|dx̂ < ∞}

and

Ap̂(G) = {f ∈ A(G),
∫
�G

Tr|p̂(π)f̂(π)|dµ(π) < ∞}.

2. The matricial group G = Gnm, m ≥
n, of a local field. Let K be a local field, n ≤ m ∈
N∗. Let Mnm be the space of all n × m-matrices
with elements from K, GLn be the multiplicative
group of all n × n-invertible matrices with elements
from K, and G = Gnm be the semi-direct product
Mnm � GLn, i.e., Gnm denotes the group of pairs
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(b, a), where b ∈ Mnm and a ∈ GLn, with multipli-
cation given by (b, a)(b′, a′) = (b + ab′, aa′). Let H
be the Hilbert space L2(GLn, du

|det(u)|n ), where |.| is
the module in K. For all λ in Mmn, the formula

[πλ(b, a)ξ](u) = τ(Tr(bλu))ξ(ua),

defines a unitary representation of Gnm in H, where
(b, a) ∈ G, ξ ∈ H, u ∈ GLn, and τ is a fixed additive
unitary nontrivial character on K. Letting S = Smn

denote the canonical realization in Mmn (see [8, p.
56, 57], S is a well defined part of Mmn) which iden-
tifies with Ĝess = {equivalence classes of πλ, λ ∈ S},
the essential dual of G = Gnm, and which bears the
Plancherel measure that we denote by ds(λ).

Now we shall introduce the notion of the
regularized Fourier cotransformation on G, which
helps as a guide to pass over from the unimod-
ular case to the nonunimodular one, and trans-
lates, mainly vis-à-vis the Fourier inversion, the
usual Fourier transformation on LCA and SLCUP
groups. In fact, let L1(H) be the space of nu-
clear operators on H, L1(S,L1(H)) = {F : S →
L1(H),

∫
S

Tr|F (λ)|ds(λ) < ∞}, and F̄ be the
Fourier cotransformation, which an isometry of Ba-
nach spaces of L1(S,L1(H)) onto A(G), defined by

F̄(F )(x) =
∫

S

Tr[πλ(x)F (λ)]ds(λ).

Then we define the regularized Fourier cotransform
of a function f ∈ A(G) by

f̂ := F̄−1(f̌),(2)

where f̌(x) = f(x−1), and the following proposition
justifies this notation. Recall that if G is a SLCUP
group, then

f̂ −→ f(x) :=
∫
�G

Tr[f̂(π)π(x)−1 ]dµ(π)

is an isometry of Banach spaces of L1(Ĝ) onto A(G)
by [7, th. 3.1, p. 217], and if f ∈ A(G) ∩ L1(G), we
have f̂ = F(f), the usual Fourier transform of f . If
G = Gnm, definition (2) generalizes these notations:

Proposition 3. The regularized Fourier co-
transformation

f̂ −→ f(x) :=
∫

S

Tr[f̂(λ)πλ(x)−1]ds(λ)

is an isometry of Banach spaces of L1(S,L1(H))
onto A(G). If moreover f ∈ A(G) ∩ L1(G), then
f̂ = F(f) ◦ δ1, where δ1 is the unbounded oper-
ator in H defined by δ1ξ(u) = |det(u)|mξ(u), and
F(f)λ := πλ(f) if λ ∈ S.

Proof. Since f̂ := F̄−1(f̌), then F̄(f̂) = f̌ , and
thus

f(x) = f̌(x−1) = F̄(f̂)(x−1)

=
∫

S

Tr[f̂(λ)πλ(x)−1]ds(λ).

On the other hand, if f ∈ A(G), then ‖f‖ = ‖f̌‖
by [8, form. (1.1), p. 22]. It follows that f̂ −→
f(x) :=

∫
S

Tr[f̂(λ)πλ(x)−1]ds(λ) is an isometry of
L1(S,L1(H)) onto A(G). Suppose that f ∈ A(G) ∩
L1(G), then in view of [8, th. 36, p. 58] we have

f(x) =
∫

S

Tr[Ff(λ) ◦ δ1πλ(x)−1]ds(λ).

Therefore F(f) ◦ δ1 = f̂ .
Note that the appearance of the unbounded op-

erator δ1 comes from the fact that G is not unimod-
ular.

Theorem 4. Let p̂ be a measurable function
on S with values in L(H), the space of linear (not
necessary bounded) operators in H, such that p̂(λ) is
self-adjoint, p̂(λ) ≥ I for almost all λ ∈ S, and

Ap̂(G) = {f(x) :=
∫

S

Tr[f̂(λ)πλ(x−1)]ds(λ),

f̂ ∈ L1(S,L1(H)),
∫

S

Tr|p̂(λ)f̂(λ)|ds(λ) < ∞}.

Then Ap̂(G) is a Banach space under the norm
‖f‖p̂ =

∫
S

Tr|p̂(λ)f̂ (λ)|ds(λ).
Proof. The proof is analogous to the proof of

Theorem 2.
Examples (of weights). Let x ∈ R∗, δx

the unbounded operator in H defined by δxξ(u) =
|det(u)|mxξ(u), then the constant weight p̂ defined
by p̂(λ) := δx + I, for every λ ∈ S, satisfies the hy-
pothesis of Theorem 4.

For recent results on the group Gnm when m =
n = 1 see [9]. In that case the essential dual of G

remounts to a single point denoted π and the space
L1(S,L1(H)) is merely L1(H).

As for the uncertainty principle for the matricial
group of a local field, our results on the Hausdorff-
Young theorem for Gnm and the inversion theorem
for Lp(Gnm) enable us to give the following natural
generalization of [9, th. 4 and cor. 5] to G = Gnm

(n ≤ m):
Theorem 5. Let K be a compact subset of G,

M be a finite dimension subspace of H. Then the
space
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AK,M (G) = {f ∈ A(G), supp(f)

⊆ K, supp(f̂) ⊆ M},
where supp(f̂) ⊆ M means that Im(f̂(λ)) ⊆ M

for almost all λ ∈ S, is a Banach space of finite
dimension.

Corollary 6. If K = C or R, then
AK,M (G) = 0.

For recent results on (the weak and topolog-
ical) Paley-Wiener property for group extensions
and locally compact groups see [3, 5]. In our case
G = Gnm, and by Corollary 6, if K = C or R, then
the P.W property [9] is valid on G, in other words,
a function f ∈ A(G) with compact support is identi-
cally zero if and only if there exists a finite dimension
subspace M of H such that supp(f̂) ⊆ M .

If G is a LCA group, Theorem 5 can be read as
the following: let K be a compact subset of G, K̂1

be a compact subset of Ĝ, then the space

AK, �K1
(G) = {f ∈ A(G), supp(f)

⊆ K, supp(f̂) ⊆ K̂1}
is a Banach space of finite dimension. From which
follows that the P.W property is valid on G (that
is AK,M (G) = 0 for all K and K̂1 as above) if and
only if G has no non-empty open compact subset.
This yields to raise the following open problem: what
happens for Corollary 6 if K �= C and �= R?

Note that if K �= C and �= R, then G = Gnm

does have non-empty open compact subsets.
Acknowledgments. I thank the referee for
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