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1. Introduction. For nonconstant mero-
morphic functions f and g on C and a finite set S
in C = C U {oo}, we say that f and g share S CM
(counting multiplicities) if f~1(S) = ¢7(S) and if
for each zo € f~1(9) two functions f — f(z0) and
g — g(20) have the same multiplicity of zero at =z,
where the notations f — oo and g — 0o mean 1/ f and
1/g, respectively. In particular if S is a one-point set
{a}, then we say also that f and g share a CM.

In [N], R. Nevanlinna showed

Theorem Al. Let f and g be two distinct non-
constant meromorphic functions on C and ay,--- , a4
four distinct points in C. If f and g share a1, - ;a4
CM, then f is a Mdbius transformation of g and
there exists a permutation o of {1,2,3,4} such that
g (3), Go(4) are Picard exceptional values of f and g
and the cross ratio (A (1), Gg(2), Ao (3)s Go(a)) = —1.

We get by this result a uniqueness theorem of
meromorphic functions as a following corollary:

Corollary A2. Let f and g be two noncon-
stant meromorphic functions on C sharing distinct
four points ay,as,as,aqs CM. If any cross ratio of
ai,as,as3,aq is not —1, then f =g.

Also, in [T] Tohge considered two meromorphic
functions sharing 1, —1, 00 and a two-point set con-
taining none of them.

Theorem B. Let f and g be two nonconstant
meromorphic functions on C sharing 1,—1,00 and
a two-point set S = {a,b} CM respectively, where
a,b # 1,—1,00. Ifa+b#0, ab # 1, a+b #
2, a+b# -2, (a+1)(b+1) # 4 and (a—1)(b—1) # 4,
then f =g.

By Tohge’s result we can get a uniqueness the-
orem of meromorphic functions sharing three val-
ues and one two-point CM since given three points
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We give a uniqueness theorem of two meromorphic functions sharing two one-

Uniqueness theorem; shared values; Nevanlinna theory.

are mapped to 1, —1, 0o, respcetively, by a suitable
Mobius transformation.

In this paper we consider the uniqueness prob-
lem of meromorphic functions on C' sharing two val-
ues and two two-point sets CM and it is enough to
consider the case where meromorphic functions on
C sharing 0,00 CM by the same reason as above.

We prepare a terminology to state our result.

Definition 1.1. Let A = {S1,---,5;} be a
finite collection of pairwise disjoint finite subsets of
C and let T be a Mdbius transformation. We call
a point zg a wandering point of T' for A if zg and
T(z0) do not belong to the same S; (j =0,1,---,q),
where Sy = C'\ (UIZ1S5)-

Theorem 1.2. Let S; and Sy be two disjoint
two-point subsets in C not containg 0. Assume that
f and g be two nonconstant meromorphic functions
on C' sharing 0,00, 51,5y CM. If for the collection
{{0}, {o0}, S1, S2} each Mobius transformation ex-
cept the indentity has at least three wandering points,
then f = g.

The six conditions about a and b in Theorem B
imply that for the collection {{1},{-1}, {o0}, {a,b}}
each Mobius transformation except the identity has
at least three wandering points.

Lemma 1.3. Let A= {S1,---,5,} be a finite
collection of pairwise disjoint finite subsets of C. Let
f and g be two nonconstant meromorphic function
on C with a relation f = T(g), where T is a Mobius
transformation not the identity. If f and g share
each S; CM (j =1,---,q), then T has at most two
wandering points for A.

Proof. If zp is not a Picard exceptional value of
g, then zg is not a wandering point of T" for .A. Hence,
by the little Picard Theorem, we get the conclusion.
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2. Representations of rank N and some
lemmas. In this section we introduce the definition
of representations of rank N. Let GG be a torsion-free
abelian multiplicative group, and consider a g¢-tuple
A = (a1,aq,...,aq) of elements a; in G.

Definition 2.1 Let N be a positive integer. We
call integers p; representations of rank N of a; if

q q
!
€5 — €5
[Ta~ =1Ta"
j=1 j=1

(2.1)

q q
(2.2) Do =Y ey

J=1 Jj=1

are equivalent for any integers 5]-,5; with
Yi_ileil < N oand Y1 |ej| < N. In partic-
ular we call representations of rank 1, simply,
representations.

Remark. For the existence of representations
of rank N, see [S]. However, according to the con-
struction of them in [S], (2.1) always implies (2.2)
for any integers 5j,5;-. Hence, in Definition 2.1, it
is significant that (2.2) implies (2.1) for any integers
gj,ey with 337 e;| < N and Y29, [¢)] < N.

We introduce the following Borel’s Lemma,
whose proof can be found, for example, on p.186 of
[La].

Lemma 2.2. If entire functions aq, aq, . . .
without zeros satisfy

7a’l’l

ag+ o+ +an =0,

then for each j =0,1,--- ,n there exists some k # j
such that o/« is constant.

Now we investigate the torsion-free abelian mul-
tiplicative group G = £/C, where & is the abelian
group of entire functions without zeros and C is the
subgroup of all non-zero constant functions.

Let aq, -+, 04 be elements in £. We represent
by [o;] the element of £/C with the representative
a;. Take representations p; of rank N of [a;]. For

q q
Hafj we define its index by Zzsj,uj. The in-

Jj=1 Jj=1

a
dices depend only on H o, | under the condition
j=1

q
D leil <N
j=1

We use the following Lemma in the proof of The-
orem 1.2 which is an application of Lemma 2.2.
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Lemma 2.3. Assume that there is a re-
,aq) = 0 where U(Xq,---,X,) €
CX1, - ,Xq] is a nonconstant polynomial of de-
gree at most N of Xi,---,X,. Then each
term aX,1%' - - X % of U(Xy,---,X,) has another
term leell ---Xq's; such that o' ---
oqell ---aq‘E; have the same indices, where a and b
are non-zero constants.

Proof. By using Lemma 2.2 each term
aX;% -+ X% has another term lea/l . ,quﬁ, such
that (a1" - - a,%) /(! ---aqeiz) is constant. This
implies the conclusion of Lemma. O

3. Proof of Theorem 1.2. Let S; be de-
fined by the equation P;(z) := 22 +ajz+b; = 0 and
&;,m; its elements. By assumption there exist entire
functions without zeros aq, a1, g such that

lation ¥(aq,---

gt and

(3.1) f=apg

and
(32) fP+a;f+b;=a;(g*+ajg+b;) (j=12).

Now we assume f # g.

Proposition 3.1.  f7'(&;) # g7 '(n;) (4 =
1,2).
Proof. Assume that f=1(¢&1) = g7 '(m). Then
there exist entire functions without zeros § and ~

such that

=& =0@g-—m), f—m=(g—E&)

Note that any of 8, v, 5/, ao/ B, c /7 is not constant
since f is not any Mobius transformation of g by
Lemma 1.3. By these two equations and (3.1) we
get

(3.3)

(&1 —m)(By — o) —m B+ &y — Eraoy +magB = 0.

It follows from this, by Lemma 2.2 and the note
above, that (Ov/ag, aof/vy and agvy/B are con-
stant. However, we can induce a contradiction 3% =
BlaonB)/ap = c187v/ap = c1ce, where ¢; and ¢y are
constants.

The case of f~1(&) = g~ 1(n2) is the same. [

Proposition 3.2. Any of o is not constant.

Proof. 1If ag is constant ¢ # 0, then for the
Mobius transformation T'(z) = cz we have f = T(g).
By Lemma 1.3 and the assumption of Theorem 1.2
we have ¢ = 1, which contradicts to f # g. Note
that f is not any Mobius transformation of g.

Next assume «; is constant ¢ # 0.
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If ¢ =1, then f is a M6bius transformation of g.
However it does not occur by Lemma 1.3. So ¢ # 1
and it follows from (3.2) for 7 = 1 that f and g does
not simultaneously take any finite value outside S;.
Therefore f~1(n2) = g~ (&), which is impossible by
Proposition 3.1.

The case where «» is constant is the same. [0

Proposition 3.3. Any of aj/av (j = 1,2) is
not constant.

Proof. Assume that a;/aq is constant ¢. Then

PHaf+h :Cg2+a1g+b1

f g

If c=1, then f =g or fg = b1. In the latter case f
is a Mobius transformation of g.

The case of ¢ # 1 induces a contradiction
f71(&) # g7 (n2) to Proposition 3.1.

The case of ag/ag is constant is the same. [

Proposition 3.4. The entire function as/aq
15 not constant.

Proof. Assume that as/a; is a constant ¢, then

92+agg+b2
g*+arg+br

fPrasf+by
f24arf+b

If ¢ =1, then we have

(a2 —a1)fg+ (ba —b1)(f +g) +

because of f # g, which implies f is a Mobius trans-
formation of g.

Hence ¢ # 1 and it follows from (3.4) that f and
g does not simultaneously take any value outside S;U
S, in C. In particular f and g are entire functions
without zeros. By applying Borel’s Lemma to (3.2)
for j = 1, we can induce 73 = ay3¢3. However, by
this and (3.1), (a1/ap)® = 1, which contradicts to
Proposition 3.3. (]

Proposition 3.5. Any of ap?/a; (j =1,2) is
not constant.

Proof. Assume that ag?/a; is a constant ¢, then

f? e 9
PPraf+b g>+ag+bh
If ¢ = 1, then a; fg + bi(f + g) = 0, which implies f
is a Mo6bius transformation of g.

Hence ¢ # 1 and it follows from (3.4) that f
and g does not simultaneously take any value outside
S; U {0} in C. Hence f~'(&) = g~ '(n2), which
contradicts to Proposition 3.1.

The case where ag? /aq is constant is the same.
O

(3.4)

(albg — agbl) =0

(3.5)
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By substituting (3.1) into (3.2) we have
(a0® —)g® +aj(a—a;)g+b;(1-a;) =0 (j =1,2).

Consider the resultant of these polynomials of g, then

0=

bi(1— 1) 0
ar(ao —a1) bi(l— )
bi(1—aq) 0

ap? — a1 ai(ag —ar)
0 0402 — Q1
ap? — a1 ai(ag —ar)

0 0402 — Q1

ar(ao —a1) bi(l— )
= —2b1bsay g 4 braglap? + baasZag?

+ b1{az(a1 — az) — 2(by — b }a1a04

+ bo{ai(ag — ay) — 2(by — b1)}asag®

+ {(a1 — az)(arby — asby) + (by — ba)*}ap?

+ {P3a (a1, az) + Psi (a1, a2)Yag®

+ {Poz(a1, az) + Paa(ay, a2) + Poy(ar, az) }ap?
+ {Piz(a1,a2) + Pia(a1, a2)}ag

+ {(a1 — a2)(a1ba — azby) + (b — b2) }a12a22
+ b1{az(a1 — az) — 2(by — bg)}oqozg

+ bo{ai(ag —ar) — 2(ba — bl)}oq a;

+ boar? + bras? — 2b1bsay s

Here Py;(X,Y’) are homogeneous polynomials of de-
gree j about X and Y, and in particular Pys3(X,Y)
have only two terms X2Y and XY?2 with some coef-
ficients.

Let  po,p1,pu2  be  representations  of
[ao], [1], [a2] with rank 6. Now we find the terms
with the minimal or maximal indices in the expan-
sion above. By assumption and Propositions above
py #0 (G =0,1,2), po # pj, 2u0 # pj (5 =1,2)
and p1 # p2. We may assume (A)ug < p1 < pg or
(B)ur < po < pra-

In the case (A) it is enough to consider only four
cases (1) 0 < pg < p1 < peo; (i) po < 0 < py < pa;
(iii) po < p1 <0 < pg; (iv) po < p1 < p2 < 0.

In the case (i) if 19 > $41, then only the term
012 has the minimal index 2uy; if po < %ul, then
only the term a1? has the minimal index 4pp. In
the case (ii) the coefficient of the term ag* is not
zero since it is the resultant of P;(z) and P»(z), and
only ap? has the minimal index 4/10. In the case (iii)
only the term @92 has the maximal index 2u2. In
the case (iv) only the term ap*a;? has the minimal
index 4po + 2p;. In all cases we get contradictions
to Lemma 2.3.
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In the case (B) it is enough to consider only two
cases (1) 0 < p1 < po < p2; (i) g1 < 0 < po < pz. In
each cases only the term «;2, in the expansion, has
the minimal index 2y, which contradicts to Lemma
2.3. The proof is completed.
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