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On meromorphic functions sharing two one-point sets

and two two-point sets
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Abstract: We give a uniqueness theorem of two meromorphic functions sharing two one-
point sets and two two-point sets CM.
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1. Introduction. For nonconstant mero-
morphic functions f and g on C and a finite set S

in Ĉ = C ∪ {∞}, we say that f and g share S CM
(counting multiplicities) if f−1(S) = g−1(S) and if
for each z0 ∈ f−1(S) two functions f − f(z0) and
g − g(z0) have the same multiplicity of zero at z0,
where the notations f −∞ and g−∞ mean 1/f and
1/g, respectively. In particular if S is a one-point set
{a}, then we say also that f and g share a CM.

In [N], R. Nevanlinna showed
Theorem A1. Let f and g be two distinct non-

constant meromorphic functions on C and a1, · · · , a4

four distinct points in Ĉ. If f and g share a1, · · · , a4

CM, then f is a Möbius transformation of g and
there exists a permutation σ of {1, 2, 3, 4} such that
aσ(3), aσ(4) are Picard exceptional values of f and g

and the cross ratio (aσ(1), aσ(2), aσ(3), aσ(4)) = −1.
We get by this result a uniqueness theorem of

meromorphic functions as a following corollary:
Corollary A2. Let f and g be two noncon-

stant meromorphic functions on C sharing distinct
four points a1, a2, a3, a4 CM. If any cross ratio of
a1, a2, a3, a4 is not −1, then f = g.

Also, in [T] Tohge considered two meromorphic
functions sharing 1,−1,∞ and a two-point set con-
taining none of them.

Theorem B. Let f and g be two nonconstant
meromorphic functions on C sharing 1,−1,∞ and
a two-point set S = {a, b} CM respectively, where
a, b �= 1,−1,∞. If a + b �= 0, ab �= 1, a + b �=
2, a+b �= −2, (a+1)(b+1) �= 4 and (a−1)(b−1) �= 4,
then f = g.

By Tohge’s result we can get a uniqueness the-
orem of meromorphic functions sharing three val-
ues and one two-point CM since given three points
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are mapped to 1,−1,∞, respcetively, by a suitable
Möbius transformation.

In this paper we consider the uniqueness prob-
lem of meromorphic functions on C sharing two val-
ues and two two-point sets CM and it is enough to
consider the case where meromorphic functions on
C sharing 0,∞ CM by the same reason as above.

We prepare a terminology to state our result.
Definition 1.1. Let A = {S1, · · · , Sq} be a

finite collection of pairwise disjoint finite subsets of
Ĉ and let T be a Möbius transformation. We call
a point z0 a wandering point of T for A if z0 and
T (z0) do not belong to the same Sj (j = 0, 1, · · · , q),
where S0 = Ĉ \ (∪q

j=1Sj).
Theorem 1.2. Let S1 and S2 be two disjoint

two-point subsets in C not containg 0. Assume that
f and g be two nonconstant meromorphic functions
on C sharing 0,∞, S1, S2 CM. If for the collection
{{0}, {∞}, S1, S2} each Möbius transformation ex-
cept the indentity has at least three wandering points,
then f = g.

The six conditions about a and b in Theorem B
imply that for the collection {{1}, {−1}, {∞}, {a, b}}
each Möbius transformation except the identity has
at least three wandering points.

Lemma 1.3. Let A = {S1, · · · , Sq} be a finite
collection of pairwise disjoint finite subsets of C. Let
f and g be two nonconstant meromorphic function
on C with a relation f = T (g), where T is a Möbius
transformation not the identity. If f and g share
each Sj CM (j = 1, · · · , q), then T has at most two
wandering points for A.

Proof. If z0 is not a Picard exceptional value of
g, then z0 is not a wandering point of T for A. Hence,
by the little Picard Theorem, we get the conclusion.

�
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2. Representations of rank N and some
lemmas. In this section we introduce the definition
of representations of rank N . Let G be a torsion-free
abelian multiplicative group, and consider a q-tuple
A = (a1, a2, . . . , aq) of elements ai in G.

Definition 2.1 Let N be a positive integer. We
call integers µj representations of rank N of aj if

(2.1)
q∏

j=1

aj
εj =

q∏
j=1

aj
ε′

j

and

(2.2)
q∑

j=1

εjµj =
q∑

j=1

ε′jµj

are equivalent for any integers εj , ε
′
j with∑q

j=1 |εj | ≤ N and
∑q

j=1 |ε′j | ≤ N . In partic-
ular we call representations of rank 1, simply,
representations.

Remark. For the existence of representations
of rank N , see [S]. However, according to the con-
struction of them in [S], (2.1) always implies (2.2)
for any integers εj , ε

′
j. Hence, in Definition 2.1, it

is significant that (2.2) implies (2.1) for any integers
εj , ε

′
j with

∑q
j=1 |εj| ≤ N and

∑q
j=1 |ε′j | ≤ N .

We introduce the following Borel’s Lemma,
whose proof can be found, for example, on p.186 of
[La].

Lemma 2.2. If entire functions α0, α1, . . . , αn

without zeros satisfy

α0 + α1 + · · · + αn = 0,

then for each j = 0, 1, · · · , n there exists some k �= j

such that αj/αk is constant.
Now we investigate the torsion-free abelian mul-

tiplicative group G = E/C, where E is the abelian
group of entire functions without zeros and C is the
subgroup of all non-zero constant functions.

Let α1, · · · , αq be elements in E . We represent
by [αj ] the element of E/C with the representative
αj . Take representations µj of rank N of [αj ]. For

q∏
j=1

αj
εj we define its index by

q∑
j=1

εjµj . The in-

dices depend only on




q∏
j=1

αj
εj


 under the condition

q∑
j=1

|εj| ≤ N .

We use the following Lemma in the proof of The-
orem 1.2 which is an application of Lemma 2.2.

Lemma 2.3. Assume that there is a re-
lation Ψ(α1, · · · , αq) ≡ 0 where Ψ(X1, · · · , Xq) ∈
C[X1, · · · , Xq] is a nonconstant polynomial of de-
gree at most N of X1, · · · , Xq. Then each
term aX1

ε1 · · ·Xq
εq of Ψ(X1, · · · , Xq) has another

term bX1
ε′
1 · · ·Xq

ε′
q such that α1

ε1 · · ·αq
εq and

α1
ε′
1 · · ·αq

ε′
q have the same indices, where a and b

are non-zero constants.
Proof. By using Lemma 2.2 each term

aX1
ε1 · · ·Xq

εq has another term bX1
ε′
1 · · ·Xq

ε′
q such

that (α1
ε1 · · ·αq

εq )/(α1
ε′
1 · · ·αq

ε′
q ) is constant. This

implies the conclusion of Lemma. �
3. Proof of Theorem 1.2. Let Sj be de-

fined by the equation Pj(z) := z2 + ajz + bj = 0 and
ξj , ηj its elements. By assumption there exist entire
functions without zeros α0, α1, α2 such that

(3.1) f = α0g

and

(3.2) f2 + ajf + bj = αj(g2 + ajg + bj) (j = 1, 2).

Now we assume f �= g.
Proposition 3.1. f−1(ξj) �= g−1(ηj) (j =

1, 2).
Proof. Assume that f−1(ξ1) = g−1(η1). Then

there exist entire functions without zeros β and γ

such that

f − ξ1 = β(g − η1), f − η1 = γ(g − ξ1).

Note that any of β, γ, β/γ, α0/β, α0/γ is not constant
since f is not any Möbius transformation of g by
Lemma 1.3. By these two equations and (3.1) we
get
(3.3)
(ξ1 − η1)(βγ −α0)− η1β + ξ1γ − ξ1α0γ + η1α0β = 0.

It follows from this, by Lemma 2.2 and the note
above, that βγ/α0, α0β/γ and α0γ/β are con-
stant. However, we can induce a contradiction β2 =
β(α0β)/α0 = c1βγ/α0 = c1c2, where c1 and c2 are
constants.

The case of f−1(ξ2) = g−1(η2) is the same. �
Proposition 3.2. Any of αj is not constant.
Proof. If α0 is constant c �= 0, then for the

Möbius transformation T (z) = cz we have f = T (g).
By Lemma 1.3 and the assumption of Theorem 1.2
we have c = 1, which contradicts to f �= g. Note
that f is not any Möbius transformation of g.

Next assume α1 is constant c �= 0.
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If c = 1, then f is a Möbius transformation of g.
However it does not occur by Lemma 1.3. So c �= 1
and it follows from (3.2) for j = 1 that f and g does
not simultaneously take any finite value outside S1.
Therefore f−1(η2) = g−1(ξ2), which is impossible by
Proposition 3.1.

The case where α2 is constant is the same. �
Proposition 3.3. Any of αj/α0 (j = 1, 2) is

not constant.
Proof. Assume that α1/α0 is constant c. Then

f2 + a1f + b1

f
= c

g2 + a1g + b1

g
.

If c = 1, then f = g or fg = b1. In the latter case f

is a Möbius transformation of g.
The case of c �= 1 induces a contradiction

f−1(ξ2) �= g−1(η2) to Proposition 3.1.
The case of α2/α0 is constant is the same. �
Proposition 3.4. The entire function α2/α1

is not constant.
Proof. Assume that α2/α1 is a constant c, then

(3.4)
f2 + a2f + b2

f2 + a1f + b1
= c

g2 + a2g + b2

g2 + a1g + b1
.

If c = 1, then we have

(a2 − a1)fg + (b2 − b1)(f + g) + (a1b2 − a2b1) = 0

because of f �= g, which implies f is a Möbius trans-
formation of g.

Hence c �= 1 and it follows from (3.4) that f and
g does not simultaneously take any value outside S1∪
S2 in Ĉ. In particular f and g are entire functions
without zeros. By applying Borel’s Lemma to (3.2)
for j = 1, we can induce f3 = α1

3g3. However, by
this and (3.1), (α1/α0)3 = 1, which contradicts to
Proposition 3.3. �

Proposition 3.5. Any of α0
2/αj (j = 1, 2) is

not constant.
Proof. Assume that α0

2/α1 is a constant c, then

(3.5)
f2

f2 + a1f + b1
= c

g2

g2 + a1g + b1
.

If c = 1, then a1fg + b1(f + g) = 0, which implies f

is a Möbius transformation of g.
Hence c �= 1 and it follows from (3.4) that f

and g does not simultaneously take any value outside
S1 ∪ {0} in Ĉ. Hence f−1(ξ2) = g−1(η2), which
contradicts to Proposition 3.1.

The case where α0
2/α1 is constant is the same.

�

By substituting (3.1) into (3.2) we have

(α0
2−αj)g2+aj(α−αj)g+bj(1−αj) = 0 (j = 1, 2).

Consider the resultant of these polynomials of g, then

0 =∣∣∣∣∣∣∣∣∣∣∣∣

α0
2 − α1 a1(α0 − α1) b1(1 − α1) 0

0 α0
2 − α1 a1(α0 − α1) b1(1 − α1)

α0
2 − α1 a1(α0 − α1) b1(1 − α1) 0

0 α0
2 − α1 a1(α0 − α1) b1(1 − α1)

∣∣∣∣∣∣∣∣∣∣∣∣
= −2b1b2α1α2α0

4 + b1α1
2α0

4 + b2α2
2α0

4

+ b1{a2(a1 − a2) − 2(b1 − b2)}α1α0
4

+ b2{a1(a2 − a1) − 2(b2 − b1)}α2α0
4

+ {(a1 − a2)(a1b2 − a2b1) + (b1 − b2)2}α0
4

+ {P32(α1, α2) + P31(α1, α2)}α0
3

+ {P23(α1, α2) + P22(α1, α2) + P21(α1, α2)}α0
2

+ {P13(α1, α2) + P12(α1, α2)}α0

+ {(a1 − a2)(a1b2 − a2b1) + (b1 − b2)2}α1
2α2

2

+ b1{a2(a1 − a2) − 2(b1 − b2)}α1α2
2

+ b2{a1(a2 − a1) − 2(b2 − b1)}α1
2α1

+ b2α1
2 + b1α2

2 − 2b1b2α1α2.

Here Pkj(X, Y ) are homogeneous polynomials of de-
gree j about X and Y , and in particular Pk3(X, Y )
have only two terms X2Y and XY 2 with some coef-
ficients.

Let µ0, µ1, µ2 be representations of
[α0], [α1], [α2] with rank 6. Now we find the terms
with the minimal or maximal indices in the expan-
sion above. By assumption and Propositions above
µj �= 0 (j = 0, 1, 2), µ0 �= µj , 2µ0 �= µj (j = 1, 2)
and µ1 �= µ2. We may assume (A)µ0 < µ1 < µ2 or
(B)µ1 < µ0 < µ2.

In the case (A) it is enough to consider only four
cases (i) 0 < µ0 < µ1 < µ2; (ii) µ0 < 0 < µ1 < µ2;
(iii) µ0 < µ1 < 0 < µ2; (iv) µ0 < µ1 < µ2 < 0.

In the case (i) if µ0 > 1
2µ1, then only the term

α1
2 has the minimal index 2µ1; if µ0 < 1

2µ1, then
only the term α1

4 has the minimal index 4µ0. In
the case (ii) the coefficient of the term α0

4 is not
zero since it is the resultant of P1(z) and P2(z), and
only α0

4 has the minimal index 4µ0. In the case (iii)
only the term α2

2 has the maximal index 2µ2. In
the case (iv) only the term α0

4α1
2 has the minimal

index 4µ0 + 2µ1. In all cases we get contradictions
to Lemma 2.3.
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In the case (B) it is enough to consider only two
cases (i) 0 < µ1 < µ0 < µ2; (ii) µ1 < 0 < µ0 < µ2. In
each cases only the term α1

2, in the expansion, has
the minimal index 2µ1, which contradicts to Lemma
2.3. The proof is completed.
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