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On reachability of parallel-flow heat exchanger equations
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Abstract: This paper is concerned with the problem of reachability of parallel-flow heat
exchanger equations with boundary inputs. It is shown that the system with boundary inputs is
formulated as a boundary control system which is well-defined in the sense of Curtain and Zwart
(1995), and further that it is reachable through a concrete expression of the solution. In addition,
the reachable subspace is given for the case where only one boundary input is added to the system.
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1. Introduction. In this paper, we shall
consider the following type of parallel-flow two-fluid
heat exchanger equation [8]:

∂z1

∂t
(t, x) = −∂z1

∂x
(t, x) + h1(z2(t, x) − z1(t, x)),

∂z2

∂t
(t, x) = −∂z2

∂x
(t, x) + h2(z1(t, x) − z2(t, x)),

(t, x) ∈ (0,∞) × [0, 1],(1)

z1(t, 0) = u1(t), z2(t, 0) = u2(t), t ∈ (0,∞),

z1(0, x) = z10(x), z2(0, x) = z20(x), x ∈ [0, 1],

where z1(t, x), z2(t, x) ∈ R are the temperature vari-
ations at time t and at the point x ∈ [0, 1] with re-
spect to an equilibrium point, u1(t), u2(t) ∈ R are
the control inputs, and h1, h2 are positive physical
parameters. This type of heat exchanger equations
has been treated in the fields of machine industry,
chemical industry and the like (see [1] and the refer-
ences therein).

In Takahashi [8], the transfer function approach
was adopted to analyze heat exchange processes such
as parallel and counter flow types. After that, for
counter-flow heat exchange processes, transient solu-
tions were analytically derived by Jaswon and Smith
[4] and Malinowski and Bielski [6]. On the other
hand, for parallel-flow heat exchange processes con-
taining system (1), exact transient solutions were
concretely given by Li [5]. However, as far as the
author knows, it has not been reported on reacha-
bility of these systems, although they are described
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by simple equations. So, in our recent study [7], we
treated the reachability problem of system (1) and
showed that the approximated system is reachable
and that it is reachable with respect to the nonneg-
ative cone X+ in the state space X when u2 ≡ 0,
using a C0-semigroup generated by the adjoint oper-
ator of the state operator. In this paper, we discuss
on reachability of the original system with boundary
inputs without approximating it.

2. Boundary control system. In this sec-
tion, we shall show that system (1) defines a bound-
ary control system

(2)
dz(t)
dt

= Az(t), z(0) = z0, Bz(t) = u(t)

in the sense of Curtain and Zwart [2, Definition
3.3.2]. For this purpose, we first introduce a Hilbert
space X := [L2(0, 1)]2 with inner product defined by

〈f, g〉X :=
∫ 1

0

{f1(x)g1(x) + f2(x)g2(x)}dx,

f = [f1, f2]T ∈ X, g = [g1, g2]T ∈ X.

Defining the unbounded operator A : D(A) ⊂ X →
X as

(Af)(x) =


 − d

dx − h1 h1

h2 − d
dx − h2





 f1(x)

f2(x)


 ,

f = [f1, f2]T ∈ D(A),(3)

D(A) =
{

f = [f1, f2]T ∈ [H1(0, 1)]2 ;

f1(0) = 0, f2(0) = 0
}
,



2 H. Sano [Vol. 83(A),

the operator A generates a C0-semigroup etA on X

as follows [7]:
• In the case of x < t

(4)


etA


 z1

z2




 (x) =


 0

0


 .

• In the case of x ≥ t
etA


 z1

z2




 (x)(5)

=
1
2


 φ11(t)z1(x − t) + φ12(t)z2(x − t)

φ21(t)z1(x − t) + φ22(t)z2(x − t)


 ,

where

φ11(t) := 1 + e−(h1+h2)t +
h2 − h1

h1 + h2
(1 − e−(h1+h2)t),

φ12(t) :=
2h1

h1 + h2
(1 − e−(h1+h2)t),

φ21(t) :=
2h2

h1 + h2
(1 − e−(h1+h2)t),

φ22(t) := 1 + e−(h1+h2)t − h2 − h1

h1 + h2
(1 − e−(h1+h2)t).

From (4) and (5), it is clear that the C0-semigroup
etA has the property etA = 0 (t ≥ 1), where etA

is said to be a nilpotent semigroup [3]. Therefore,
system (1) is super-stable without adding any control
inputs since the growth bound of etA is −∞.

Now, let us introduce the operator A : D(A) ⊂
X → X

Af =


 − df1

dx + h1(f2 − f1)

− df2
dx + h2(f1 − f2)


 ,

f = [f1, f2]T ∈ D(A) = [H1(0, 1)]2,

and the boundary operator B : D(B) ⊂ X → R2

Bf = [f1(0), f2(0)]T ,

f = [f1, f2]T ∈ D(B) = D(A).

Then, the operator A whose domain is restricted to
D(A)∩kerB is equal to A. Therefore, it generates a
C0-semigroup. Here, defining the bounded operator
B ∈ L(R2, X) as

Bu =


 (1 − x)u1

(1 − x)u2


 , u = [u1, u2]T ∈ R2,

it follows that Bu ∈ D(A) = D(B) for each u ∈ R2,
and that

BBu = B


 (1 − x)u1

(1 − x)u2


=


 (1 − 0)u1

(1 − 0)u2


 = u, u ∈ R2.

Moreover, noting that

ABu = A


 (1 − x)u1

(1 − x)u2




=


 u1 + h1(1 − x)(u2 − u1)

u2 + h2(1 − x)(u1 − u2)


 ∈ X, u ∈ R2,

it follows that AB ∈ L(R2, X). In this way, we see
that system (1) defines a boundary control system in
the sense of [2, Definition 3.3.2].

By [2, Chapter 3], the reachable subspace of sys-
tem (2) is expressed as

Rb =
{

f ∈ X ; ∃ τ > 0, ∃u ∈ H1(0, τ ;R2) s.t.

u(0) = 0,

f = Bu(τ) +
∫ τ

0

e(τ−s)AABu(s)ds(6)

−
∫ τ

0

e(τ−s)ABu̇(s)ds

}a

,

where {· · · }a denotes the closure of the set {· · · }.
Here, note that system (2) (i.e., system (1)) is called
reachable if Rb = X .

3. Main results. Since it is difficult to solve
the reachable subspace of system (2) concretely
based on the abstract expression (6), we directly
calculate, in this paper, the solution of system (1)
according to the method of characteristic differen-
tial equation, and then state the results concerning
reachability.

First, defining

(7) f(t, x) := z1(t, x) − z2(t, x),

we have the following equation from system (1):

∂f

∂t
(t, x) +

∂f

∂x
(t, x) = −(h1 + h2)f(t, x),

(t, x) ∈ (0,∞) × [0, 1],

f(t, 0) = a(t), t ∈ (0,∞),

where a(t) := u1(t)− u2(t). Then, the characteristic
differential equation is given by
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dt

1
=

dx

1
=

df

−(h1 + h2)f
.

By solving this, we get

(8) f(t, x) = a(t − x)e−(h1+h2)x.

Nextly, defining

(9) g(t, x) := h2z1(t, x) + h1z2(t, x),

we have the following equation from system (1):

∂g

∂t
(t, x) +

∂g

∂x
(t, x) = 0,

(t, x) ∈ (0,∞) × [0, 1],

g(t, 0) = b(t), t ∈ (0,∞),

where b(t) := h2u1(t) + h1u2(t). Then, similarly as
in the above, we get

(10) g(t, x) = b(t − x).

Here, combining (7), (8), (9), and (10), we get

z1(t, x) =
h2 + h1e

−(h1+h2)x

h1 + h2
u1(t − x)

+
h1 − h1e

−(h1+h2)x

h1 + h2
u2(t − x),(11)

z2(t, x) =
h2 − h2e

−(h1+h2)x

h1 + h2
u1(t − x)

+
h1 + h2e

−(h1+h2)x

h1 + h2
u2(t − x).

Then, we have the following theorem:
Theorem 3.1. System (2) (i.e., system (1)) is

reachable, in other words, Rb = X.
Proof. We have only to show that, for each

[z̃1, z̃2]T ∈ [H1(0, 1)]2 and for any fixed τ > 1, there
exists u ∈ H1(0, τ ;R2), u(0) = 0 such that

(12) z1(τ, x) = z̃1(x), z2(τ, x) = z̃2(x),

because [H1(0, 1)]2 is dense in X . It is easy to see
that (12) is equivalent to

u1(τ − x) =
h2 + h1e

(h1+h2)x

h1 + h2
z̃1(x)

+
h1 − h1e

(h1+h2)x

h1 + h2
z̃2(x),

u2(τ − x) =
h2 − h2e

(h1+h2)x

h1 + h2
z̃1(x)

+
h1 + h2e

(h1+h2)x

h1 + h2
z̃2(x).

For each i = 1, 2, let ζi ∈ H1(0, τ) be an extension
of z̃i ∈ H1(0, 1) such that

ζi|[0,1] = z̃i, ζi(τ) = 0.

Here, setting the inputs as

u1(t) =
h2 + h1e

(h1+h2)(τ−t)

h1 + h2
ζ1(τ − t)

+
h1 − h1e

(h1+h2)(τ−t)

h1 + h2
ζ2(τ − t),(13)

u2(t) =
h2 − h2e

(h1+h2)(τ−t)

h1 + h2
ζ1(τ − t)

+
h1 + h2e

(h1+h2)(τ−t)

h1 + h2
ζ2(τ − t),

it follows that u1 ∈ H1(0, τ ;R), u1(0) = 0 and u2 ∈
H1(0, τ ;R), u2(0) = 0. Furthermore, we see that
(12) is satisfied with the inputs u1(t), u2(t) given by
(13).

Finally, we shall give the reachable subspace of
the system with only one boundary input. In the
case of u2 ≡ 0, the reachable subspace of the system
is expressed as

R̂b =
{

f ∈ X ; ∃ τ > 0, ∃u1 ∈ H1(0, τ ;R) s.t.

u1(0) = 0,

f = B̂u1(τ) +
∫ τ

0

e(τ−s)AÂB̂u1(s)ds

−
∫ τ

0

e(τ−s)AB̂u̇1(s)ds

}a

,

where the operator A is defined by (3), and the other
operators are defined by

Âf =


− df1

dx + h1(f2 − f1)

− df2
dx + h2(f1 − f2)


 , f = [f1, f2]T ∈ D(Â),

D(Â) =
{

f = [f1, f2]T ∈ [H1(0, 1)]2 ; f2(0) = 0
}
,

and

B̂u1 =


 (1 − x)u1

0


 , u1 ∈ R.

Theorem 3.2. Consider the system (1) with
u2 ≡ 0. Then, there holds

R̂b =
{[

f,
h2 − h2e

−(h1+h2)(·)

h2 + h1e−(h1+h2)(·) f
]T ∈ X ;

f ∈ L2(0, 1)
}

.(14)
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Proof. When u2 ≡ 0, it follows from (11) that

z1(t, x) =
h2 + h1e

−(h1+h2)x

h1 + h2
u1(t − x),(15)

z2(t, x) =
h2 − h2e

−(h1+h2)x

h1 + h2
u1(t − x).

By the similar discussion as in the proof of Theo-
rem 3.1, it is possible to show that, for each z̃1 ∈
H1(0, 1) and for any fixed τ > 1, there exists u1 ∈
H1(0, τ ;R), u1(0) = 0 such that z1(τ, x) = z̃1(x).
Here, putting t = τ in (15) and eliminating u1 yields

z2(τ, x) =
h2 − h2e

−(h1+h2)x

h2 + h1e−(h1+h2)x
z̃1(x).

Finally, noting that H1(0, 1) is dense in L2(0, 1), we
have (14).

Remark 3.1. The solution (15) to the system
(1) with u2 ≡ 0 has been given in [5]. Note that, in
the paper, the method by the Laplace tranformation
is used.
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