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Discrete tomography and the Hodge conjecture
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Abstract: We study a problem in discrete tomography on Zn, and show that there is an
intimate connection between the problem and the study of the Hodge cycles on abelian varieties of
CM-type. This connection enables us to apply our results in tomography to obtain several infinite
families of abelian varieties for which the Hodge conjecture holds.
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1. Introduction. Tomography usually re-
constructs the shape of a solid object from images of
successive plane sections of it. (The so-called “CT”
is an abbreviation of “Computerized Tomography.”)
Discrete tomography, on the other hand, tries to
reconstruct a function f on Zn from various sums
ft+v =

∑
x∈t+v f(x), v ∈ Zn, where t (called a win-

dow) is a fixed finite subset of Zn. (See section two
for precise definition.) The purpose of this paper is
to anounce several results in discrete tomography by
arbitrary windows in Zn, and show that it leads us
naturally to the proof of the Hodge conjecture for
certain abelian varieties with complex multiplication
by abelian CM-fields.

The plan of this paper is as follows: In Section
two, we define the object of our main concern, the
space A0

t of bounded arrays of degree zero with re-
spect to every translation of a window t, and formu-
late the basic problems. Section three gives a dimen-
sion formula for A0

t , and Section four concerns with
the periodicity of arrays in A0

t , and describes a crite-
rion for A0

t to contain a multiply periodic array. Sec-
tion five examines several examples and shows how
to apply the general results to investigate concrete
examples of windows. In Section six we reveal an in-
timate connection between discrete tomography and
the study of the Hodge rings of abelian varieties with
complex multiplication by abelian CM-field. Details
will appear elsewhere.

2. Problem setting. In this section we in-
troduce some notation and formulate the basic prob-
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lems of our concern.
Let A = (C)Z

n

denote the set of C-valued func-
tions on Zn. We write its element in the form a =
(ai) where i = (i1, . . . , in) ∈ Zn and ai ∈ C. We call
an element of A simply an array. When there exists
a positive constant C such that |ai| < C for any i ∈
Zn, the array is said to be bounded. We denote the
set of bounded arrays by A0. For any array a = (ai),
let suppa = {i ∈ Zn ; ai 6= 0} ⊂ Zn and call it the
support of a. An array with finite support is called
a window, and the set of windows is denoted by W.
For any window t = (ti) and for any array a = (ai),
let dt(a) =

∑
i∈Zn tiai and call it the degree of a with

respect to t. Furthermore let

A0
t =

{
a ∈ A0 ; dt+p(a) = 0 for any p ∈ Zn

}
,

the set of bounded arrays of degree zero with respect
to every translation of t. Here the translated window
t + p is defined by (t + p)i = ti−p, i ∈ Zn. The
main problems we want to study in this paper are
the following ones:

(2.a) to find a condition for finite-dimensionality
of A0

t ,
(2.b) to find an explicit formula for the dimension

of A0
t ,

(2.c) to find a condition under which A0
t contains a

multiply periodic array.
3. Dimension formula for A0

t . In this sec-
tion we solve the problems (2.a) and (2.b).

In order to formulate our result, we introduce
some notation. For any window t = (ti) ∈ W,
let mt(z) =

∑
i∈Zn tizi ∈ C

[
z1, z

−1
1 , . . . , zn, z

−1
n

]
,

where z = (z1, . . . , zn) and zi = zi1
1 · · · zin

n . We
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call it the characteristic polynomial of t. Let T =
{z ∈ C ; |z| = 1} and let ι : Tn → Tn denote
the automorphism of Tn defined by ι(z1, . . . , zn) =
(z−1

1 , . . . , z−1
n ). We put m∗

t = ι∗(mt) so that
m∗

t(z) = mt(ι(z)). For any subset X ⊂ Cn, we de-
note the zero locus {z ∈ X ; mt(z) = 0} by VX(mt).

Theorem 3.1. Suppose that VTn(m∗
t) is a fi-

nite set . Then we have

dimCA
0
t = # (VTn(m∗

t)) .

When VTn(m∗
t) is infinite, the space A0

t is infinite-
dimensional .

For the proof we employ the theory of pseu-
domeasures on the n-dimensional torus and their
Fourier transforms, as is derscribed in [1].

4. Periodicity of arrays in A0
t . In this sec-

tion we solve the problem (2.c).
Let µn ⊂ T denote the set of the n-th roots

of unity and let µ∞ =
⋃

n≥1 µn. An array a =
(ai)i∈Zn ∈ A is said to be n-ply periodic, if there
exists an element c = (c1, . . . , cn) ∈ Zn

≥1 such that
ai = ai+c holds for any i ∈ Zn. The following theo-
rem provides us with a criterion for periodicity:

Theorem 4.1. For any window t, there exists
a nonzero n-ply periodic array in A0

t if and only if
Vµn

∞
(mt) 6= ∅.
Remark. The condition Vµn

∞
(mt) 6= ∅ is

equivalent to Vµn
∞

(m∗
t) 6= ∅, since ι restricts to a

bijection on µn
∞.

Corollary 4.1.1. For any window t, there
exists a nonzero n-ply periodic array with period
(c1, . . . , cn) in A0

t if and only if Vµc1×···×µcn
(mt)

6= ∅.
5. Applications. In this section, we apply

Theorem 3.1 and Theorem 4.1 to determine the
structure of A0

t for some examples of 2-dimensional
windows.

5.1. Window tharmonic. This is defined by

(tharmonic)(i,j) =


−4, if (i, j) = 0,
1, if |i|+ |j| = 1,
0, otherwise.

(See Remark 5.1.1 (1) below for the reason why we
call it harmonic.) The characteristic polynomial is
given by mtharmonic = w + (z − 4 + z−1) + w−1. Let
(z0, w0) ∈ VT2

(
m∗

tharmonic

)
. Then we have

m∗
tharmonic

(z0, w0) = mtharmonic

(
z−1
0 , w−1

0

)
= w−1

0 +
(
z−1
0 − 4 + z0

)
+ w0 = 0,

and hence w0 + z0 + z−1
0 + w−1

0 = 4. This is pos-
sible only if z0 = w0 = 1, since (z0, w0) ∈ T2.
Hence we see that VT2

(
m∗

tharmonic

)
= {(1, 1)} and

dimA0
tharmonic

= #
(
VT2

(
m∗

tharmonic

))
= 1 by Theo-

rem 3.1. On the other hand, it is clear that the all-
one array 1 belongs to A0

tharmonic
. Hence we obtain

the following
Proposition 5.1. For the window tharmonic,

we have A0
tharmonic

= {c.1 ; c ∈ C}.
Remark 5.1.1. (1) Note that an array a =(

a(i,j)

)
(i,j)∈Z

belongs to A0
tharmonic

if and only if it is

bounded and a(i,j) =
(
a(i+1,j) + a(i,j+1) + a(i−1,j) +

a(i,j−1)

)/
4 for any (i, j) ∈ Z2. Hence it gives rise

to a discrete harmonic function on the lattice Z2.
Thus Proposition 5.1 says that any bounded discrete
harmonic function on Z2 must be constant.
(2) One can generalize the proposition to the n-
dimensional window tn

harmonic defined by

(tn
harmonic)i =


−2n, if i = 0,
1, if

∑
1≤j≤n |ij | = 1,

0, otherwise.

Thus any bounded discrete harmonic function on Zn

must be constant.
5.2. Window tstairs(N) (N ≥ 1). We de-

fine tstairs(N) =
(
t(i,j)

)
by

t(i,j) =

{
1, if 0 ≤ i, j, i+ j ≤ N,

0, otherwise.

Proposition 5.2. Let R∗n = µn − {1}, the set
of nontrivial n-th roots of unity , and let ∆n denote
the diagonal of R∗n ×R∗n. Then we have

VT2

(
mtstairs(N)

)
= (R∗N+1 ×R∗N+1 −∆N+1)

∪ (R∗N+2 ×R∗N+2 −∆N+2).

Note that the right hand side is stable under
ι : T2 → T2, hence we see that

VT2

(
m∗

tstairs(N)

)
= (R∗N+1 ×R∗N+1 −∆N+1)

∪ (R∗N+2 ×R∗N+2 −∆N+2)

(5.1)

holds too. Since #(R∗n×R∗n−∆n) = (n−1)2− (n−
1) = (n− 1)(n− 2) for any n and (R∗N+1 ×R∗N+1 −
∆N+1) ∩ (R∗N+2 × R∗N+2 −∆N+2) = ∅, the equality
(5.1) together with Theorem 3.1 and Theorem 4.1
implies the following corollaries.

Corollary 5.2.1. dimA0
tstairs(N) = 2N2.
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Corollary 5.2.2. Every array in A0
tstairs(N)

is doubly periodic with period (lcm(N + 1, N +
2), lcm(N + 1, N + 2)).

5.3. Window tleg(a, b). This is defined by

(tleg(a,b))(i,j) =


1, if 0≤ i≤ a and j = 0,

or if i= 0 and 0≤ j ≤ b,

0, otherwise.

Proposition 5.3. VT2

(
mtleg(a,b)

)
= (R∗a ×

R∗b+1) ∪ (R∗a+1 × R∗b) ∪ ∆′
a+b+1, where ∆′

a+b+1 =
{(z, w) ∈ R∗a+b+1 ×R∗a+b+1 ; zw = 1}.
This implies the following corollaries through Theo-
rems 3.1 and 4.1.

Corollary 5.3.1. For any pair (a, b) of posi-
tive integers, we have

dimA0
tleg(a,b) = 2(ab+ 1)− (a, b+ 1)− (a+ 1, b).

Corollary 5.3.2. Every array in A0
tleg(a,b) is

doubly periodic.
6. Application to the study of Hodge cy-

cles. In this section we show that our results in
discrete tomography play an important role in the
study of the ring of Hodge cycles on certain abelian
varieties of CM-type.

For any n-tuple c = (c1, . . . , cn) of integers ≥ 2,
we consider a CM-fieldKc such that the Galois group
G(Kc/Q) is isomorphic to the abelian group Gc =
Z/2Z × Hc, where Hc =

∏
1≤j≤n Z/cjZ, and the

complex conjugation ρ corresponds to (1, 0, . . . , 0) ∈
Gc. A subset T ⊂ Gc is called a CM-type if

Gc = T q ρ(T ) (disjoint sum).

Let Gc = Z[Gc] and let Hc = Z[Hc], the latter be-
ing regarded as a subring of Gc through the natural
inclusion map. Furthermore we put

G≥0
c =

∑
g∈Gc

cg.g ∈ Gc ; cg ≥ 0 for any g ∈ Gc

 .
We will write the group operation on Gc multiplica-
tively in order to tell it from the addition in the
group ring. Through this convention any element
g1 ∈ Gc acts as an automorphism of Gc by the rule
g1

(∑
g∈Gc

cg.g
)

=
∑

g∈Gc
cg.g1g. Let p : Gc → Hc

denote the projection defined by p
(∑

g∈Gc
cg.g

)
=∑

g∈Hc
cg.g. For any subset S ⊂ Gc let [S] =∑

s∈S s ∈ Gc. We define a linear map ϕ : Gc →
Hc by

ϕ(v) = p(v − ρv), v ∈ Gc.

Let(
G≥0

c

)
nondiv

=

∑
g∈Gc

cg.g ∈ G≥0
c ; cgcρg = 0 for any g ∈ Gc


(We will see below that each element of

(
G≥0

c

)
nondiv

gives rise to a nondivisorial Hodge cycle on a cer-
tain abelian variety constructed from these data.)
We introduce a natural Z-valued pairing 〈 , 〉Gc

by
〈∑

g∈Gc
cg.g,

∑
g∈Gc

dg.g
〉

Gc

=
∑

g∈Gc
cgdg.

We recall below some facts on Hodge cycles on
abelian varieties of CM-type (see [3] for details). Let
T ⊂ Gc be a CM-type and let AT denote the abelian
variety associated to T . One knows that the first co-
homology group H1(AT ,C) can be identified with
CGc , and the complexification of the Hodge ring
(⊂
∧

(CGc)) admits as basis the set of basis vector of∧
(CGc) corresponding to subsets P of Gc with the

property that

#(P ∩ gT ) = (#P )/2 for any g ∈ Gc.

This condition can be reformulated in terms of the
group algebra Gc as

〈[P ], [gT ]− ρ[gT ]〉Gc = 0 for any g ∈ Gc.

We can generalize the above consideration to deal
with the Hodge ring of AN

T = AT × · · · × AT (N
times), by using the isomorphism H1

(
AN

T ,C
) ∼=

(CGc)⊕N . For any i ∈ [1, N ], let ei
g, g ∈ Gc, de-

note the standard basis of the i-th direct summand
of (CGc)⊕N . For any v =

∑
g∈Gc

cg.g ∈ G≥0
c with

cg ≤ N , we denote by 〈v〉 the basis element of∧(
(CGc)⊕N

)
defined by

〈v〉 =
∧

g∈Gc

 ∧
1≤ig≤cg

eig
g

 .

We have seen in [3] that 〈v〉 is a Hodge cycle on AN
T

if and only if 〈v, [gT ]− ρ[gT ]〉Gc = 0 for any g ∈ Gc.
Furthermore, when AT is simple, one knows that 〈v〉
is nondivisorial if and only if cgcρg = 0 holds for any
g ∈ Gc. In view of this, we put

Gc(T )Hodge

=
{
v∈G≥0

c ; 〈v,[gT ]−ρ[gT ]〉Gc =0 for any g ∈Gc

}
,

Gc(T )Hodge,nondiv =Gc(T )Hodge∩
(
G≥0

c

)
nondiv

.
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A CM-type T ⊂ Gc is said to be primitive if the
corresponding abelian variety AT is simple. By [4],
T is primitive if and only if there exists no g ∈ Gc −
{0} such that g.T = T . We summarize the above
argument in the following form:

Proposition 6.1. For any v =
∑

g∈Gc
cg.g

∈ Gc≥0 ,
(i) 〈v〉 is a Hodge cycle on some self-product of AT

if and only if v ∈ Gc(T )Hodge.
(ii) When T is primitive, 〈v〉 is a nondivisorial

Hodge cycle on some self-product of AT if and
only if v ∈ Gc(T )Hodge,nondiv.
We will see that the sets Gc(T )Hodge and

Gc(T )Hodge,nondiv are related with a certain set of
arrays investigated in the previous sections. For any
element w =

∑
h∈Hc

dh.h of Hc, we define a window
tw = (twi )i∈Zn by the rule

twi =

{
dπc(i), i ∈ [0, c− 1],
0, otherwise.

where πc : Zn → Hc denotes the natural projection.
We denote by A(Z) the set of Z-valued arrays, and
let A0

t(Z) = A0
t ∩A(Z). In this notation, πc induces

an injective homomorphism π∗c : Hc (= (Z)Hc) →
A(Z) (= (Z)Z

n

), whose image coincides with

A(Z)c = {(ai)i∈Zn ∈A(Z) ;ai+c =ai for any i∈Zn},

the set of n-ply periodic arrays with period c.
Theorem 6.2. Let T ⊂ Gc be a CM-type.

For an element v ∈ G≥0
c to belong to Gc(T )Hodge,

it is necessary and sufficient that π∗c(ϕ(v)) ∈
A0

tϕ([T ])(Z)c.
In view of Proposition 6.1, Theorem 6.2 enables

us to relate the study of Hodge cycles with that of
discrete tomography in the following form:

Theorem 6.3. Let T ⊂ Gc be a CM-type and
let v ∈ G≥0

c . Then 〈v〉 is a Hodge cycle on some
self-product of the abelian variety AT if and only if
π∗c(ϕ(v)) ∈ A0

tϕ[T ](Z)c.
Next we will study Hodge rings of an infinite

family of abelian varieties constructed from a fixed
finite subset of Zn

≥0. For any finite subset S ⊂ Zn
≥0,

let Rec(S) =
{
c ∈ Zn

≥2 ; [0, c− 1] ⊃ S
}
, where Z≥n

denotes the set of integers greater than or equal to
n. When c ∈ Rec(S), we regard S as a subset of Hc

through the natural projection. Let

Rec(S)nonprim

= {c ∈ Rec(S) ;

h.S = S or S′ for some h ∈ Hc − {(0, . . . , 0)}},
Rec(S)prim = Rec(S)− Rec(S)nonprim,

where S′ denotes the complement of S ⊂ Hc in
Hc. We denote by AV(S) the set of abelian vari-
eties ATc,S

, c ∈ Rec(S), with complex multiplication
by Kc such that its CM-type Tc,S is given by

(6.5) Tc,S = ({0} × S) ∪ ({1} × (S′)) ⊂ Gc.

It follows from [4] that Ac is simple if and only if c ∈
Rec(S)prim. Recall that an abelian variety A of CM-
type is said to be stably nondegenerate if there are no
nondivisorial Hodge cycles on A as well as any of its
self-products [2]. If A is not stably nondegenerate,
then it is said to be stably degenerate. The following
theorem determines completely which abelian vari-
eties in AV(S) are simple and stably nondegenerate.

Theorem 6.4. Notation being as above, let

Period(S) =
{
c ∈ Rec(S) ; Vµc1×···×µcn

(
mt[S]

)
6= ∅
}
.

Then we have

{c ∈ Rec(S) ; ATc,S
is simple and stably nondegenerate}

= Rec(S)prim − Period(S).

We examine how this theorem contributes to the
study of Hodge cycles through several examples.
First we deal with the window tstairs(N) treated
in 5.2.

Example 6.5. Let S = tstairs(N), N ≥ 1. In
this case we have

Rec(tstairs(N))prim = Rec(tstairs(N)) = Z2
≥N+1,

Furthermore Proposition 5.2 tells us that

Period(tstairs(N)) = Z2
≥N+1 ∩ (PairN+1 ∪PairN+2),

where we put Pairn = {(a, b) ∈ Z2
≥0 ; (a, n), (b, n) >

1} − {(a, b) ∈ Z2
≥0 ; (a, n) = (b, n) = 2} for any n.

(Note that Pair2 = ∅ by definition.) Thus it follows
from Theorem 6.4 that for any positive N and for
any c ∈ Z2

≥N+1 − (PairN+1 ∪PairN+2), the abelian
variety ATc,tstairs(N) is simple and stably nondegener-
ate. In particular, we see that

there exist infinitely many stably nondegen-
erate abelian varieties in AV(tstairs(N)), and
hence Hodge conjecture holds for infinitely many
abelian varieties in AV(tstairs(N)).

Moreover the same theorem implies also that
there exist infinitely many stably degenerate
abelian varieties in AV(tstairs(N)).



No. 3] Discrete tomography and Hodge conjecture 29

The following two examples examine the simplest
and the second simplest n-dimensional windows.

Proposition 6.6. Let O = {(0, . . . , 0)} ⊂ Zn.
Then any abelian varieties in AV(O) are simple and
stably nondegenerate. In particular the Hodge con-
jecture holds for every abelian variety in AV(O).

Corollary 6.6.1. Let K be an arbitrary
abelian CM-field which contains an imaginary
quadratic subfield . Then there exists at least one
CM-type for K such that the corresponding abelian
variety satisfies the Hodge conjecture.

Remark. Actually, anyone with a little expe-
rience of computing Hodge cycles on abelian varieties
could prove Proposition 6.6 directly without any
knowledge about discrete tomography. The point is,
however, that discrete tomography leads us naturally
to the simplest window, which gives rise, a posteri-
ori, to infinitely many stably nondegenerate abelian
varieties as above.

The next example deals with the second simplest
window. The result is, however, rather different. For
any integer n, let Zeven,≥n (resp. Zodd,≥n) denote the
set of even (resp. odd) integers ≥ n.

Proposition 6.7. Let Domino denote the
subset {0, e1} ⊂ Zn, where e1 = {1, 0, . . . , 0}. Then
we have

Rec(Domino)nonprim = {2} × Zn−1
≥2 ,

Rec(Domino)prim = Z≥3 × Zn−1
≥2 .

Furthermore every abelian variety ATc,Domino
with

c ∈ Zodd,≥3 × Zn−1
≥2 is stably nondegenerate. On

the other hand , every abelian variety ATc,Domino
with

c ∈ Zeven,≥4 × Zn−1
≥2 is stably degenerate.

Acknowledgement. The author would like
to take this opportunity to thank Prof. S. Sato for
helpful conversations and suggestions.

References

[ 1 ] R. E. Edwards, Fourier series, a modern introduc-
tion, vol. 2, 2nd. ed., Graduate Texts in Mathe-
matics 85, Springer, New York, 1982.

[ 2 ] F. Hazama, Algebraic cycles on certain abelian va-
rieties and powers of special surfaces, J. Fac. Sci.
Univ. Tokyo Sect. IA Math. 31 (1985), no. 3,
487–520.

[ 3 ] F. Hazama, Hodge cycles on abelian varieties with
complex multiplication by cyclic CM-fields, J.
Math. Sci. Univ. Tokyo 10 (2003), no. 4, 581–598.

[ 4 ] K. A. Ribet, Division fields of abelian varieties
with complex multiplication, Mém. Soc. Math.
France (N.S.) 2 (1980), no. 2, 75–94.


