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On the ranks of Conway group Co1
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Abstract: Let G be a finite group and X a conjugacy class of G. We denote rank(G : X)
to be the minimum number of elements of X generating G. In the present paper we investigate
the ranks of the Conway group Co1. Computations were carried with the aid of computer algebra
system GAP [16].
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1. Introduction and preliminaries. Let
G be a finite group and X ⊆ G. We denote the
minimum number of elements of X generating G by
rank(G : X). In the present paper we investigate
rank(G : X) where X is a conjugacy class of G and
G is a sporadic simple group.

Moori in [12, 13] and [14] proved that
rank(Fi22 : 2A) ∈ {5, 6} and rank(Fi22 : 2B) =
rank(Fi22 : 2C) = 3 where 2A, 2B and 2C are
the conjugacy classes of involutions of the smallest
Fischer group Fi22 as represented in the ATLAS
[4]. The work of Hall and Soicher [10] shows that
rank(Fi22 : 2A) = 6. Moori in [15] determined the
ranks of the Janko group J1, J2 and J3. Recently
in [1] and [2] the authors computed the ranks of the
four sporadic simple groups HS , McL, Co2 and Co3.

In the present article, the authors continue their
study to determine the ranks of the sporadic simple
groups and the problem is resolved for the Conway’s
largest sporadic simple group Co1. We determine
the rank for each conjugacy class of Co1. We prove
the following result:

Theorem 2.7. Let Co1 be the Conway’s
largest sporadic simple group. Then
(a) rank(Co1 : nX) = 3 if nX ∈ {2A, 2B, 2C, 3A}.
(b) rank(Co1 : nX) = 2

if nX /∈ {1A, 2A, 2B, 2C, 3A}.
For basic properties of Co1, character tables of

Co1 and their maximal subgroups we use ATLAS
[4] and GAP [16]. For detailed information about
the computational techniques used in this paper the
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reader is encouraged to consult [1, 9] and [14].
Throughout this paper our notation is standard

and taken mainly from [1, 2] and [9]. In particu-
lar, for a finite group G with C1, C2, . . . , Ck conju-
gacy classes of its elements and gk a fixed representa-
tive of Ck, we denote ∆G(C1, C2, . . . , Ck) the num-
ber of distinct tuples (g1, g2, . . . , gk−1) with gi ∈ Ci

such that g1g2 . . . gk−1 = gk. It is well known that
∆G(C1, C2, . . . , Ck) is structure constant for the con-
jugacy classes C1, C2, . . . , Ck and can be easily com-
puted from the character table of G (see [11], p. 45)
by the following formula

∆G(C1, C2, . . . , Ck) =
|C1||C2| · · · |Ck−1|

|G|

×
m∑

i=1

χi(g1)χi(g2) · · ·χi(gk−1)χi(gk)
[χi(1G)]k−2

where χ1, χ2, . . . , χm are the irreducible complex
characters of G. Further let ∆∗

G(C1, C2, . . . , Ck) de-
note the number of distinct tuples (g1, g2, . . . , gk−1)
with gi ∈ Ci and g1g2 · · · gk−1 = gk such that
G = 〈g1, g2, . . . , gk−1〉. If ∆∗

G(C1, C2, . . . , Ck) > 0,
then we say that G is (C1, C2, . . . , Ck)-generated.
If H is a subgroup of G containing gk and B is
a conjugacy class of H such that gk ∈ B, then
ΣH(C1, C2, . . . Ck−1, B) denotes the number of dis-
tinct tuples (g1, g2, . . . , gk−1) such that gi ∈ Ci and
g1g2 · · · gk−1 = gk and 〈g1, g2, . . . , gk−1〉 ≤ H .

For the description of the conjugacy classes, the
character tables, permutation characters and infor-
mation on the maximal subgroups readers are re-
ferred to ATLAS [4]. A general conjugacy class of
elements of order n in G is denoted by nX . For ex-
ample 2A represents the first conjugacy class of invo-
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lutions in a group G. We will use the maximal sub-
groups and the permutation characters of Co1 on the
conjugates (right cosets) of the maximal subgroups
listed in the ATLAS [4] extensively.

The following results will be crucial in determin-
ing the ranks of a finite group G.

Lemma 1.1 (Moori [15]). Let G be a finite
simple group such that G is (lX, mY, nZ)-generated.
Then G is (lX, lX, . . . , lX︸ ︷︷ ︸

m-times

, (nZ)m)-generated.

Corollary 1.2. Let G be a finite simple group
such that G is (lX, mY, nZ)-generated, then rank(G :
lX) ≤ m.

Proof. The proof follows immediately from
Lemma 1.1.

Lemma 1.3 (Conder et al. [5]). Let G be a
simple (2X, mY, nZ)-generated group. Then G is
(mY, mY, (nZ)2)-generated.

We will employ results that, in certain sit-
uations, will effectively establish non-generation.
They include Scott’s theorem (cf. [5] and [17]) and
Lemma 3.3 in [19] which we state here.

Lemma 1.4 ([19]). Let G be a finite center-
less group and suppose lX, mY , nZ are G-conjugacy
classes for which ∆∗(G) = ∆∗

G(lX, mY, nZ) <

|CG(nZ)|. Then ∆∗(G) = 0 and therefore G is not
(lX, mY, nZ)-generated.

2. Ranks of Co1. The Conway group Co1

is a sporadic simple group of order

4, 157, 776, 806, 543, 360, 000 = 221.39.54.11.13.23.

The subgroup structure of Co1 is discussed in Wilson
[18]. The group Co1 has exactly 22 conjugacy classes
of maximal subgroups as listed in Wilson [18]. Co1

has 101 conjugacy classes of its elements. It has pre-
cisely three classes of involutions, namely 2A, 2B and
2C as represented in the ATLAS [4]. Co1 acts on a
24-dimensional vector space Ω over GF (2) and this
action produces three orbits on the set of non-zero
vectors. The point stabilizers are the groups Co2,
Co3 and 211 : M24 and the permutation character of
Co1 on Ω − {0}, which is given in [6], is χ = 3.1a +
2.299a+2.17250a+3.80730a+376740a+644644a+
2055625a+2417415a+2.5494125a, where na denotes
the first irreducible character with degree n. For ba-
sic properties of Co1 and information on its maximal
subgroups the reader is referred to [3, 4, 6] and [18].

Recently Darafsheh, Ashrafi and Moghani in
[6, 7] and [8] established (p, q, r)-generations and
nX-complementary generations of the Conway group

Co1. We will make use of these generations to deter-
mine the ranks of Co1 in some cases.

In the following we prove that the Conway group
Co1 can be generated by three involutions.

Lemma 2.1. The group Co1 can be generated
by three involutions a, b, c ∈ 2A such that abc ∈ 13A.

Proof. Using the character table of Co1 we have
∆Co1(2A, 2A, 2A, 13A) = 9633. In Co1 we have only
two maximal subgroups, up to isomorphism, with
orders divisible by 13, namely, H1

∼= 3.Suz.2 and
H2

∼= (A4 × G2(4)) : 2. We also have

ΣH1(2A, 2A, 2A, 13A)

= ∆H1(2A, 2A, 2A, 13A) = 1521.

A fixed element of order 13 in Co1 lies in four conju-
gates of H1. Hence H1 contributes 4 × 1521 = 6084
to the number ∆Co1(2A, 2A, 2A, 13A). Similarly, we
compute that

ΣH2(2A, 2A, 2A, 13A)

= ∆H2(2A, 2A, 2A, 13A) = 169.

And a fixed element of order 13 in Co1 lies in a unique
conjugate of H2. This means that H2 contributes
1×169 = 169 to the number ∆Co1(2A, 2A, 2A, 13A).
Since

∆∗
Co1

(2A, 2A, 2A, 13A) ≥ 9633− 6084 − 169 > 0,

the group Co1 is (2A, 2A, 2A, 13A)-generated.
Lemma 2.2. Let Co1 be the Conway’s largest

sporadic group Co1 then rank(Co1 : 2X) = 3 where
X ∈ {A, B, C}.

Proof. We proved in the previous lemma
that Co1 is (2A, 2A, 2A, 13A)-generated and so
rank(Co1 : 2A) ≤ 3 but rank(Co1 : 2A) = 2 is not
possible, because if 〈x, y〉 = Co1 for some x, y ∈ 2A

then Co1
∼= D2n with o(xy) = n. Hence rank(Co1 :

2A) = 3. Darafsheh et al. in [6] proved that Co1

is (2Y, 3D, 11A)-generated for Y ∈ {B, C}. Now by
applying Corollary 1.2, we have rank(Co1 : 2Y ) ≤ 3
for Y ∈ {B, C}, but we know that rank(Co1 : 2Y ) >

2 as we argue in the above case, hence rank(Co1 :
2Y ) = 3 where Y ∈ {B, C}. Therefore rank(Co1 :
2X) = 3 where X ∈ {A, B, C}.

Lemma 2.3. rank(Co1 : 3A) = 3.
Proof. First we show that rank(Co1 : 3A) > 2

by proving that Co1 is not (3A, 3A, tX)-generated
for any conjugacy class tX . If Co1 is (3A, 3A, tX)-
generated then 1/3 + 1/3 + 1/t < 1 and it follows
that t ≥ 4. Set K = {4A, 5A, 6A}. Using GAP [16]
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we see that ∆Co1(3A, 3A, tX) = 0 if tX /∈ K and for
tX ∈ K we have ∆Co1(3A, 3A, tX) < |CCo1(tX)|.
We get that

∆∗
Co1

(3A, 3A, tX) < ∆Co1(3A, 3A, tX)

< |CCo1(tX)|.

Using Lemma 1.4, we obtain that ∆∗
Co1

(3A, 3A,

tX) = 0 for all tX with t ≥ 4 and therefore Co1

is not (3A, 3A, tX)-generated and hence rank(Co1 :
3A) > 2. Next we show that rank(Co1 : 3A) = 3.

Consider the triple (3A, 3A, 3A, 10E). From
the maximal subgroups of Co1, we see that the
only maximal subgroups of Co1 with order divis-
ible by 10 and non-empty intersection with the
conjugacy classes 3A and 10E are isomorphic to
H1 = 21+8

+ .O+
8 (2), H2 = 31+4.2U4(2).2, H3 =

(A5 × J2) : 2 and H4 = (D10 × (A5 × A5).2).2.
We compute ∆Co1(3A, 3A, 3A, 10E) = 600 and
ΣH1(3A, 3A, 3A, 10E) = ΣH2(3A, 3A, 3A, 10E) =
ΣH3(3A, 3A, 3A, 10E) = ΣH4(3A, 3A, 3A, 10E) =
0. Thus no proper subgroup of Co1 is
(3A, 3A, 3A, 10E)-generated and we get

∆∗
Co1

(3A, 3A, 3A, 10E)

= ∆Co1(3A, 3A, 3A, 10E) = 600.

Hence Co1 is (3A, 3A, 3A, 10E)-generated and the
result follows.

Lemma 2.4. rank(Co1 : tX) = 2 for tX ∈
{3B, 4A, 4B, 4C, 4D, 5A, 6A}.

Proof. Set T = {3B, 4B, 4D, 5A, 6A}. Consider
the triple (tX, tX, 13A) for each tX ∈ T . The max-
imal subgroups of Co1 containing elements of order
13 are, up to isomorphism, H1

∼= 3.Suz.2 and H2
∼=

(A4×G2(4)) : 2. We see that a fixed element of order
13 in Co1 is contained in precisely four copies of H1

in Co1 and in a unique conjugate copy of H2 in Co1.
Now we calculate that for each tX ∈ T , we have

∆∗
Co1

(tX, tX, 13A)

≥ ∆Co1(tX, tX, 13A)− 4ΣH1(tX, tX, 13A)

− ΣH2(tX, tX, 13A) > 0.

We conclude that Co1 is (tX, tX, 13A)-generated for
each tX ∈ T . Hence rank(Co1 : tX) = 2 for each
tX ∈ T .

Next for tX = 4A consider the triple (2C, 4A,

26A). Up to isomorphism, the only maximal
subgroup of Co1 that may contain (2C,4A,26A)-
generated proper subgroup is isomorphic to
H2

∼= (A4 × G2(4)) : 2. We calculate that

∆Co1(2C, 4A, 26A) = 91 and ΣH2(2C, 4A, 26A) =
39. Now a fixed element of order 26 in Co1 lies
in a unique conjugate of H2 in Co1. Hence
H2 contributes 1 × 39 = 39 to the num-
ber ∆Co1(2C, 4A, 26A). Our calculation gives
∆∗

Co1
(2C, 4A, 26A) ≥ 91 − 39 > 0 and therefore,

Co1 is (2C, 4A, 26A)-generated. Now applying
Lemma 1.2, we get rank(Co1 : 4A) = 2.

Finally for the rank of the conjugacy class tX =
4C we consider the triple (4C, 4C, 13A). The Co1-
class 4C fails to meet any copy of H1 or H2 in
Co1. Thus Co1 contains no proper (4C, 4C, 13A)-
subgroup. As ∆Co1(4C, 4C, 13A) = 7866268 we
conclude that Co1 is (4C, 4C, 13A)-generated and
rank(Co1 : 4C) = 2. This completes the proof.

Lemma 2.5. If n ≥ 4 and nX /∈ T =
{4A, 4B, 4C, 4D, 5A, 6A} then rank(Co1 : nX) = 2.

Proof. Direct computation using GAP and re-
sults from Darafsheh, Ashrafi and Moghani ([8])
together with information about the power maps
of Co1 we can show that Co1 is (2A, nX, mZ)-
generated for each conjugacy class nX /∈ T of Co1

(n ≥ 4) with appropriate mZ. Now by Lemma 1.3,
Co1 is (nX, nX, (mZ)2)-generated for all nX /∈ T

(n ≥ 4). Hence rank(Co1 : nX) = 2 for all n ≥ 4
and for each conjugacy class nX /∈ T of Co1.

Remark 2.6. For example Co1 is (2A, 23A,

23B)-generated. Hence Co1 is (23A, 23A, (23B)2)-
generated, so that rank(Co1 : 23A) = 2.

We now state the main result of the paper.
Theorem 2.7. Let Co1 be the Conway’s

largest sporadic simple group. Then
(a) rank(Co1 : nX) = 3 if nX ∈ {2A, 2B, 2C, 3A}.
(b) rank(Co1 : nX) = 2

if nX /∈ {1A, 2A, 2B, 2C, 3A}.
Proof. The proof follows from Lemmas 2.1,

2.2, . . . , and 2.5.
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