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On the Kleiman-Mori cone
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Abstract: The Kleiman-Mori cone plays important roles in the birational geometry. In
this paper, we construct complete varieties whose Kleiman-Mori cones have interesting properties.
First, we construct a simple and explicit example of complete non-projective singular varieties
for which Kleiman’s ampleness criterion does not hold. More precisely, we construct a complete
non-projective toric variety X and a line bundle L on X such that L is positive on NE (X) \ {0}.
Next, we construct complete singular varieties X with NE (X) = N1(X) � Rk for any k. These
explicit examples seem to be missing in the literature.
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1. Introduction. The Kleiman-Mori cone
plays important roles in the birational geome-
try. In this paper, we construct complete varieties
whose Kleiman-Mori cones have interesting proper-
ties. First, we construct a simple and explicit ex-
ample of complete non-projective singular varieties
for which Kleiman’s ampleness criterion does not
hold. More precisely, we construct a complete non-
projective toric variety X and a line bundle L on X

such that L is positive on NE (X) \ {0}.
Definition 1.1. Let V be a complete alge-

braic scheme defined over an algebraically closed field
k. We say that Kleiman’s ampleness criterion holds
for V if and only if the interior of the nef cone of V

coincides with the ample cone of V .
Note that Kleiman’s original statements are

very sharp. We recommend the reader to see [6,
Chapter IV §2 Theorems 1, 2]. Of course, our exam-
ple is not “quasi-divisorial”in the sense of Kleiman
(see [6, Chapter IV §2 Definition 4 and Theorem 2]).
We do not repeat the definition of quasi-divisorial
since we do not use it in this paper. Note that if X

is projective or Q-factorial then X is quasi-divisorial
in the sense of Kleiman. Next, we construct complete
singular varieties X with NE (X) = N1(X) � Rk for
any k. We note that the condition NE (X) = N1(X)
is equivalent to the following one: a line bundle L is
nef if and only if L is numerically trivial. These ex-
plicit examples seem to be missing in the literature.
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We adopt the toric geometry to construct examples.
Notation. We use the basic notation of the

toric geometry throughout this paper. Let vi ∈ N =
Z3 for 1 ≤ i ≤ k. Then the symbol 〈v1, v2, . . . , vk〉
denotes the cone R≥0v1 + R≥0v2 + · · · + R≥0vk in
NR.

2. Eikelberg’s formula. In this section, we
quickly review Eikelberg’s formula, which we use in
the following sections. For the proof, see [1].

Theorem 2.1 (cf. [1, Theorem 3.2]). Let
X := X(∆) be a d-dimensional complete toric va-
riety given by a fan ∆, ∆(d) := {σ ∈ ∆ | dimσ =
d}, ∆(1) := {τ1, . . . , τn} and n the number of the
one-dimensional cones in ∆. Furthermore, let vi be
the primitive lattice point of τi ∈ ∆(1) and D =
η1V (τ1) + · · · + ηnV (τn) a torus invariant Cartier
divisor such that ηi �= 0 for all i. Define the space of
all affine dependences

AD(σ) :=
{

(α1, . . . , αn) ∈ Qn
∣∣∣

∑
τj⊂σ

αj
1
ηj

vj = 0,

∑
τj⊂σ

αj = 0, and αj = 0 if τj �⊂ σ
}

.

Then PicX � Zn−d−dimQ

∑
σ∈∆(d) AD(σ).

3. On Kleiman’s ampleness criterion.
In this section, we construct explicit examples for
which Kleiman’s ampleness criterion does not hold.
We think that the following example is the simplest
one. It seems to be easy to construct a lot of sin-
gular toric varieties for which Kleiman’s ampleness
criterion does not hold. The reader can find many
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examples of singular toric 3-folds in [5]. He can eas-
ily check that Kleiman’s ampleness criterion does not
hold for X6 in [5]. For the cone theorem of toric va-
rieties, see [4, Theorem 4.1].

3.1 (Construction). We fix N = Z3. We put

v1 = (1, 0, 1), v2 = (0, 1, 1), v3 = (−1,−1, 1),

v4 = (1, 0,−1), v5 = (0, 1,−1), v6 = (−1,−1,−1).

We consider the following fans.

∆P =




〈v1, v2, v4〉, 〈v2, v4, v5〉, 〈v2, v3, v5, v6〉,
〈v1, v3, v4, v6〉, 〈v1, v2, v3〉, 〈v4, v5, v6〉,
and their faces




,

and

∆Q =




〈v1, v2, v4, v5〉, 〈v2, v3, v5, v6〉,
〈v1, v3, v4, v6〉, 〈v1, v2, v3〉, 〈v4, v5, v6〉,
and their faces




.
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Fig. 1. ∆P .
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Fig. 2. ∆Q.

Lemma 3.2. We have the following proper-
ties:
(i) XP := X(∆P ) is a non-projective complete toric

variety with ρ(XP ) = 1,
(ii) XQ := X(∆Q) is a projective toric variety with

ρ(XQ) = 1,

(iii) there exists a toric birational morphism fPQ :
XP −→ XQ, which contracts a P1 on XP ,

(iv) XP and XQ have only canonical Gorenstein sin-
gularities, and

(v) N1(XP ) � N1(XQ)
∪ ∪

NE (XP ) � NE (XQ).

In particular, NE(XP ) = NE (XP ) is a half line.
Proof. It is easy to check that XQ is projective

and ρ(XQ) = 1 (cf. [1, Example 3.5], Theorem 2.1).
Assume that XP is projective. Then there exists a
strict upper convex support function h. We note that

v1 + v5 = v2 + v4,

v2 + v6 = v3 + v5,

v3 + v4 = v1 + v6.

Thus, we obtain

h(v1) + h(v5) < h(v2) + h(v4),

h(v2) + h(v6) = h(v3) + h(v5),

h(v3) + h(v4) = h(v1) + h(v6).

This implies that
6∑

i=1

h(vi) <

6∑
i=1

h(vi).

It is a contradiction. Therefore, XP is not projec-
tive. Thus fPQ is not a projective morphism. So,
L · C = 0 for every L ∈ Pic(XP ), where C � P1

is the exceptional locus of fPQ. We note that the
condition (ii) (b) in [6, p. 325 Theorem 1] does not
hold. The other statements are easy to check.

Let H be an ample Cartier divisor on XQ and
D := (fPQ)∗H . Then D is positive on NE (XP ) \
{0} = NE (XP ) \ {0}. Thus, the interior of the nef
cone of XP is non-empty (cf. [6, p. 327 Proposition
2]). However, D is not ample on XP . Therefore,
Kleiman’s ampleness criterion does not hold for XP .
Note that XP is not projective nor quasi-divisorial
in the sense of Kleiman (see [6, p. 326 Definition 4]).

Therefore, Kleiman’s ampleness criterion does
not hold for arbitrary complete toric varieties (see
Proposition 3.7 below).

Corollary 3.3. We put X := XP × P1 ×
· · · × P1. Then we obtain complete non-projective
singular toric varieties with dim X ≥ 4 for which
Kleiman’s ampleness criterion does not hold. Since
every complete toric surface is Q-factorial and pro-
jective, Kleiman’s ampleness criterion always holds
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for toric surfaces.
Remark 3.4. Let X be a complete Q-

factorial algebraic variety. Then it is not difficult
to see that X is projective if ρ(X) = 1. We note
that we can apply Kleiman’s criterion since X is Q-
factorial. So, all we have to prove is that NE (X) is
a half line. We assume that NE (X) = NE (X) � R.
Thus, there exist integral curves C and C ′ on X such
that C = αC ′ in NE (X) with α < 0. We can take
effective divisors D and D′ such that D · C > 0 and
D′ · C ′ > 0. Then, all the curves that intersect D

properly are contained in D′. It is a contradiction.
Therefore, we obtain that NE (X) is a half line. So,
every effective Weil divisor is an ample Q-Cartier
divisor.

Remark 3.5. In [7, Chapter VI. Appendix
2.19.3 Exercise], Kollár pointed out that Kleiman’s
ampleness criterion does not hold for smooth proper
algebraic spaces.

Remark 3.6. In [4, Theorem 4.1], we claim
that NE (X/Y ) is strongly convex if f : X −→ Y is
projective. This is obvious. However, in the proof
of Theorem 4.1 in [4], we say that it follows from
Kleiman’s criterion. Sorry, it is misleading.

We note the following ampleness criterion,
which works for complete toric varieties with arbi-
trary singularities.

Proposition 3.7. Let X be a complete toric
variety and L a line bundle on X. Assume that L ·
C > 0 for every torus invariant integral curve C on
X. Then L is ample. In particular, X is projective.

Proof. Since NE (X) is spanned by the torus in-
variant curves on X, it is obvious that L is nef. This
implies that L is generated by its global sections.
Note that we can replace X (resp. L) with its toric
resolution Y (resp. the pull-back of L on Y ) in order
to check the freeness of L. Thus, the proof of the
freeness is easy. We consider the equivariant mor-
phism f := Φ|mL| : X −→ Y associated to the linear
system |mL|, where m is a sufficiently large positive
integer. Then we obtain that mL = f∗H for a very
ample line bundle H on Y . It is not difficult to see
that V := {y ∈ Y | dim f−1(y) ≥ 1} is a torus in-
variant closed subset of Y . If V is not empty, then
V contains a torus invariant point P of Y . We can
find a torus invariant curve C in f−1(P ). Then mL ·
C = f∗H · C = 0 by the projection formula. It is
a contradiction. Therefore, f is finite. Thus, L is
ample.

4. Singular varieties with NE(X) =
N1(X). In this section, we construct complete sin-
gular toric varieties with NE (X) = N1(X) � Rk for
any k ≥ 0.

Remark 4.1. The condition NE (X) =
N1(X) is equivalent to the following one: a line
bundle L is nef if and only if L is numerically
equivalent to zero.

Remark 4.2. Let X be a complete toric vari-
ety and L a line bundle on X. Then, it is well-known
that L is numerically equivalent to zero if and only
if it is trivial.

4.3 (Construction). We fix N = Z3 and M :=
HomZ(N, Z) � Z3. We put

v1 = (1, 0, 1), v2 = (0, 1, 1), v3 = (−1,−2, 1),

v4 = (1, 0,−1), v5 = (0, 1,−1), v6 = (−1,−1,−1),

v7 = (0, 0,−1).

First, we consider the following fan.

∆A =




〈v1, v2, v4, v5〉, 〈v2, v3, v5, v6〉,
〈v1, v3, v4, v6〉, 〈v1, v2, v3〉, 〈v4, v5, v6〉,
and their faces




.

We put XA := X(∆A) and Di := V (vi) for every
i. This example XA is essentially the same as [1,
Example 3.5]. We consider the principal divisor
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Fig. 3. ∆A .

D = D1 + D2 + D3 − D4 − D5 − D6

that is associated to m = (0, 0,−1) ∈ M . We put

σ1 = 〈v1, v2, v4, v5〉, σ2 = 〈v2, v3, v5, v6〉,
σ3 = 〈v1, v3, v4, v6〉.

Then, all points in
∑3

i=1 AD(σi) are linear combina-
tions of the row vectors of the matrix
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1 −1 0 1 −1 0
0 −1 2 0 −3 2
−2 0 1 −1 0 2




which has rank 3. Note that we use D to define
AD(σi) and that σi is not simplicial for every i and
all the other 3-dimensional cones in ∆A are simpli-
cial. For the definition of AD(σi), see Theorem 2.1.
Therefore, Pic XA � Z6−3−3 = {0} by Theorem 2.1.

Next, we consider the following fan.

∆B =




〈v1, v2, v4, v5〉, 〈v2, v3, v5, v6〉,
〈v1, v3, v4, v6〉, 〈v1, v2, v3〉, 〈v4, v5, v7〉,
〈v4, v6, v7〉, 〈v5, v6, v7〉,

and their faces




.

We recommend the reader to draw the picture of ∆B

by himself. We put XB := X(∆B). Then XB −→
XA is the blow up along 〈v7〉. We consider the prin-
cipal divisor

D′ = D1 + D2 + D3 − D4 − D5 − D6 − D7

that is associated to m = (0, 0,−1) ∈ M . Then, all
points in

∑3
i=1 AD(σi) are linear combinations of the

row vectors of the matrix


1 −1 0 1 −1 0 0
0 −1 2 0 −3 2 0
−2 0 1 −1 0 2 0




which has rank 3. We note that we use D′ to de-
fine AD(σi) and that σi is not simplicial for every
i and all the other 3-dimensional cones in ∆B are
simplicial. Thus, we have PicXB � Z7−3−3 = Z by
Theorem 2.1.

Lemma 4.4. D7 is a Cartier divisor.
Proof. It is because each 3-dimensional cone

containing v7 is non-singular. Thus, D7 is
Cartier.

We put C1 := V (〈v4, v5〉) � P1 and C2 :=
V (〈v4, v7〉) � P1. The following lemma is a key
property of this example.

Lemma 4.5. C1 · D7 > 0 and C2 · D7 < 0.
More precisely, C1 ·D7 = 1 and C2 ·D7 = −3. There-
fore, D7 is a generator of PicXB � Z.

Proof. It is obvious that C1 ·D7 = 1 > 0. Since
v4 + v5 + v6 − 3v7 = 0, we have C2 · D7 = −3C2 ·
D5 = −3 < 0.

Therefore, NE (XB) = N1(XB) � R. In partic-
ular, XB is not projective.

Corollary 4.6. Let X :=XA. Then NE (X)=
N1(X) = {0}. Let X := XB ×XB × · · ·×XB be the

k times product of XB . Then NE (X) = N1(X) �
Rk.

Proof. The first statement is obvious by the
above construction. It is not difficult to see that
PicX � ⊕k

i=1 p∗i PicXB , where pi : X −→ XB is
the i-th projection. Thus, we can check that any nef
line bundle on X is numerically trivial. Therefore,
NE (X) = N1(X) � Rk.

In the above corollary, dimX = 3k if NE (X) =
N1(X) � Rk for k ≥ 1. We can construct 3-folds
with NE (X) = N1(X) � Rk for every k ≥ 0. We
just note this fact in the next remark. The details
are left to the reader.

Remark 4.7. We put X0 := XA, where XA is
in 4.3. We define primitive vectors {vk} inductively
for k ≥ 7 as follows: 〈vk〉 = 〈v4 + v5 + vk−1〉. Let
Xk −→ Xk−1 be the blow up along 〈vk+6〉 for k ≥ 1.
Note that X1 = XB , where XB is in 4.3. It is not
difficult to see that NE (Xk) = N1(Xk) � Rk and
dimXk = 3. We note that the numerical equivalence
classes of Di = V (vi)’s for 7 ≤ i ≤ k +6 form a basis
of N1(Xk).

5. Miscellaneous comments. In this sec-
tion, we collect miscellaneous examples.

5.1 (Non-singular complete algebraic varieties).
After I circulated a preliminary version [3] of this
paper, Sam Payne constructed beautiful examples
(see [9]). These are counterexamples to Conjecture
4.5 in [3]. Let l be any integer such that l ≥ 11. He
constructed Xl with the following properties.
• Xl is a non-singular complete toric 3-fold,
• Xl has no nontrivial nef line bundles, that is,

NE (Xl) = N1(Xl) (see Remark 4.1), and
• the Picard number ρ(Xl) = l ≥ 11.

For the details, see [9]. I think that the following
problem is still open.

Problem 5.2. Are there non-singular com-
plete algebraic varieties X with NE (X) = N1(X)
and 2 ≤ ρ(X) ≤ 10?

Remark 5.3. Let X be a non-singular com-
plete algebraic variety. Then ρ(X) ≥ 1. It is ob-
vious that X is projective when ρ(X) = 1 (see Re-
mark 3.4). It does not necessarily hold for algebraic
spaces (see Example 5.7 below).

Note the following remarks when we think Prob-
lem 5.2.

Remark 5.4. Let X be a complete normal
(not necessarily Q-factorial) variety. If there exists a
proper surjective morphism f : X −→ Y such that Y
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is projective and dimY ≥ 1, then it is obvious that
NE (X) ⊂ NE (X) � N1(X).

Remark 5.5. If X is a complete (not nec-
essarily Q-factorial) toric variety with NE (X) �

N1(X), then there exists a nontrivial nef line bun-
dle L on X. Thus, we obtain the toric morphism
f : X −→ Y := Proj

⊕
k≥0 H0(X,L⊗k) such that

L = f∗H, where H is an ample line bundle on Y .
Note that dimY ≥ 1.

5.6 (Algebraic space). The following example
is more or less well-known to the experts. I learned
it from S. Mori, who call it Hironaka’s example.

Example 5.7. Let Q � P1 × P1 be a non-
singular quadric surface in P3

C. We take a non-
singular (3, d)-curve C in Q, where d ∈ Z>0. That
is, OQ(C) � p∗1OP1(3) ⊗ p∗2OP1(d), where p1 (resp.
p2) is the first (resp. second) projection from Q to
P1. Let f1 (resp. f2) be a fiber of p2 : Q −→ P1

(resp. p1). We take the blow up π : X −→ P3 along
C. Let Q′ be the strict transform of Q and E the
exceptional divisor of π. Then Q′ = f∗Q − E. Let
f ′

i be the strict transform of fi for i = 1, 2. We have

Q′ · f ′
1 = f∗Q · f ′

1 −E · f ′
1 = Q · f1 − 3 = 2− 3 = −1.

Thus we can blow down X to Y along the ruling
p2 : Q′ � Q −→ P1 (cf. [8, Main Theorem] and [2]).
Note that Y is a compact Moishezon manifold. The
Kleiman-Mori cone NE (X) is spanned by 2 rays R

and R′. We note that X is non-singular projective
and ρ(X) = 2. Let l be a fiber of π : X −→ P3.
Then, one ray R is spanned by the numerical equiv-
alence class of l. We put L := π∗OP3(1). Then L is
non-negative on NE (X) and R = (L = 0) ∩NE (X).
We have the following intersection numbers.

L · l = 0, L · f ′
1 = L · f ′

2 = 2,

E · l = −1, E · f ′
1 = 3, E · f ′

2 = d.

From now on, we assume d ≥ 4. We can write f ′
1 =

af ′
2 + bl in N1(X) for a, b ∈ R. Thus we can easily

check that a = 1, b = d − 3 > 0. Therefore, the nu-
merical equivalence class of f ′

1 is in the interior of the
cone spanned by the numerical equivalence classes
of f ′

2 and l. Thus, we have NE (Y ) = NE (Y ) =
N1(Y ) � R. Therefore, Y is a non-singular com-
plete algebraic space with ρ(X) = 1. Note that Y is
not a scheme (cf. Remark 3.4).
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