# Values of absolute tensor products 

By Nobushige Kurokawa

Department of Mathematics, Tokyo Institute of Technology, Oo-okayama, Meguro-ku, Tokyo 152-8551
(Communicated by Shigefumi Mori, m. J. A., Dec. 12, 2005)


#### Abstract

We study values of absolute tensor products (multiple zeta functions) at integral arguments. We obtain a simple formula for the absolute value of the double sine function. We express values of the multiple gamma function related to the functional equation.

Key words: Absolute tensor product; multiple zeta function; multiple sine function; mul-


 tiple gamma function.1. Introduction. We study values of absolute tensor products (multiple zeta functions) of two types: $\zeta\left(s, \mathbf{F}_{p_{1}}\right) \otimes \cdots \otimes \zeta\left(s, \mathbf{F}_{p_{r}}\right)$ and the multiple gamma function $\Gamma_{r}(s)$.

Let $p$ and $q$ be prime numbers. In $\operatorname{Re}(s)>0$ we define $\zeta_{p, q}(s)$ as follows:
$\zeta_{p, q}(s)=\left\{\begin{array}{r}\exp \left(-\frac{i}{2} \sum_{n=1}^{\infty} \frac{\cot (\pi n(\log p / \log q))}{n} p^{-n s}\right. \\ -\frac{i}{2} \sum_{n=1}^{\infty} \frac{\cot (\pi n(\log q / \log p))}{n} q^{-n s} \\ \left.-\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n} p^{-n s}-\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n} q^{-n s}\right) \\ \text { if } p \neq q, \\ \exp \left(\frac{i}{2 \pi} \sum_{n=1}^{\infty} \frac{1}{n^{2}} p^{-n s}\right. \\ \left.-\left(1-\frac{i \log p}{2 \pi} s\right) \sum_{n=1}^{\infty} \frac{1}{n} p^{-n s}\right) \\ \text { if } p=q .\end{array}\right.$
In $[7,8], \zeta_{p, q}(s)$ is identified with the absolute tensor product $\zeta\left(s, \mathbf{F}_{p}\right) \otimes \zeta\left(s, \mathbf{F}_{q}\right)$, where $\zeta\left(s, \mathbf{F}_{p}\right)=(1-$ $\left.p^{-s}\right)^{-1}$ is the Hasse zeta function of the finite field $\mathbf{F}_{p}$ (or of the scheme $\operatorname{Spec}\left(\mathbf{F}_{p}\right)$ ). We recall the following results proved in [7, 8].

Theorem A. Let $p$ and $q$ be distinct prime numbers.
(1) $\zeta_{p, q}(s)$ converges absolutely in $\operatorname{Re}(s)>0$.
(2) $\zeta_{p, q}(s)$ has an analytic continuation to all $s \in \mathbf{C}$ as a meromorphic function of order 2 .
(3) All the zeros and poles are simple and they are located as follows:

[^0]\[

$$
\begin{aligned}
& \text { zeros at } s \in \frac{2 \pi i}{\log p} \mathbf{Z}_{\geq 0}+\frac{2 \pi i}{\log q} \mathbf{Z}_{\geq 0} \\
& \text { poles at } s \in \frac{2 \pi i}{\log p} \mathbf{Z}_{<0}+\frac{2 \pi i}{\log q} \mathbf{Z}_{<0}
\end{aligned}
$$
\]

(4) $\zeta_{p, q}(s)$ has the following functional equation:

$$
\begin{aligned}
& \zeta_{p, q}(-s) \\
& =\zeta_{p, q}(s)^{-1}(p q)^{s / 2}\left(1-p^{-s}\right)\left(1-q^{-s}\right) \\
& \quad \times \exp \left(\frac{i \log p \log q}{4 \pi} s^{2}\right. \\
& \left.\quad-\frac{\pi i}{6}\left(\frac{\log q}{\log p}+\frac{\log p}{\log q}+3\right)\right) .
\end{aligned}
$$

Theorem B. Let $p$ be a prime number.
(1) $\zeta_{p, p}(s)$ converges absolutely in $\operatorname{Re}(s)>0$.
(2) $\zeta_{p, p}(s)$ has an analytic continuation to all $s \in \mathbf{C}$ as a meromorphic function of order 2.
(3) $\zeta_{p, p}(s)$ has the following zeros and poles:
zeros at $s=\frac{2 \pi i n}{\log p}$ for $n \in \mathbf{Z}_{\geq 0}$ of order $n+1$
poles at $s=-\frac{2 \pi i n}{\log p}$ for $n \in \mathbf{Z}_{\geq 2}$ of order $n-1$
(4) $\zeta_{p, p}(s)$ has the functional equation:

$$
\begin{aligned}
\zeta_{p, p}(-s)= & \zeta_{p, p}(s)^{-1} p^{s}\left(1-p^{-s}\right)^{2} \\
& \times \exp \left(\frac{i(\log p)^{2}}{4 \pi} s^{2}-\frac{5 \pi i}{6}\right)
\end{aligned}
$$

We remark that Theorems A and B remind us of the simple result:

Theorem C. Let $p$ be a prime number, and let

$$
\zeta_{p}(s)=\exp \left(\sum_{n=1}^{\infty} \frac{1}{n} p^{-n s}\right)
$$

in $\operatorname{Re}(s)>0$. Then:
(1) $\zeta_{p}(s)$ converges absolutely in $\operatorname{Re}(s)>0$.
(2) $\zeta_{p}(s)$ has an analytic continuation to all $s \in \mathbf{C}$ as a meromorphic function of order 1.
(3) $\zeta_{p}(s)$ has no zeros, and $\zeta_{p}(s)$ has the poles at $s \in(2 \pi i / \log p) \mathbf{Z}$, which are all simple.
(4) $\zeta_{p}(s)$ has the functional equation $\zeta_{p}(-s)=$ $\zeta_{p}(s)\left(-p^{-s}\right)$.
Of course, Theorem C is easily seen from the expression

$$
\zeta_{p}(s)=\left(1-p^{-s}\right)^{-1}
$$

On the other hand, Theorems A and B are not so easy to show and we used the theory of double sine functions developed in $[2,5,6]$. In this paper we first study the values $\zeta_{p, q}(-m)$ for integers $m \geq 1$. We obtain the following results:

Theorem 1. Let $p$ and $q$ be prime numbers. Then

$$
\left|\zeta_{p, q}(-m)\right|=\sqrt{\left(p^{m}-1\right)\left(q^{m}-1\right)}
$$

for integers $m \geq 1$.

## Theorem 2.

$$
\zeta_{2,2}(-1)=-e^{(\pi i) / 8}
$$

Next, we study the triple case

$$
\begin{aligned}
& \zeta_{p, p, p}(s) \\
& =\exp ( \\
& \quad-\frac{1}{4 \pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{3}} p^{-n s} \\
& \\
& +\frac{i}{2 \pi}\left(\frac{i s \log p}{2 \pi}-\frac{3}{2}\right) \sum_{n=1}^{\infty} \frac{1}{n^{2}} p^{-n s} \\
& \\
& +\frac{1}{2}\left(\frac{i s \log p}{2 \pi}-1\right)\left(\frac{i s \log p}{2 \pi}-2\right) \\
& \left.\quad \times \sum_{n=1}^{\infty} \frac{1}{n} p^{-n s}\right) .
\end{aligned}
$$

We report the following concrete result:

## Theorem 3.

$$
\left|\zeta_{2,2,2}(-1)\right|=e^{-(7 \zeta(3)) /\left(32 \pi^{2}\right)}
$$

We recall that Quillen [14] and Lichtenbaum [11] gave an excellent interpretation for

$$
\left|\zeta_{p}(-m)\right|^{-1}=p^{m}-1
$$

as the order of $K$-group

$$
\left|\zeta_{p}(-m)\right|^{-1}=\# K_{2 m-1}\left(\mathbf{F}_{p}\right)
$$

It would be interesting to give some interpretation such as

$$
\left|\zeta_{p, q}(-m)\right|=\sqrt{\# K_{2 m-1}\left(\mathbf{F}_{p} \otimes_{\mathbf{F}_{1}} \mathbf{F}_{q}\right)},
$$

where $\mathbf{F}_{1}$ is the (virtual) field of one element (see $[10,12,13,15])$.

Next, we investigate values of the multiple gamma function considered as a multiple zeta function (absolute tensor product). We recall that the multiple gamma function $\Gamma_{r}(s)$ of Barnes [1] is defined as

$$
\begin{aligned}
\Gamma_{r}(s) & =\left(\prod_{n_{1}, \ldots, n_{r} \geq 0}\left(n_{1}+\cdots+n_{r}+s\right)\right)^{-1} \\
& =\exp \left(\left.\frac{\partial}{\partial w} \zeta_{r}(w, s)\right|_{w=0}\right)
\end{aligned}
$$

where

$$
\zeta_{r}(w, s)=\sum_{n_{1}, \ldots, n_{r} \geq 0}\left(n_{1}+\cdots+n_{r}+s\right)^{-w}
$$

is the multiple Hurwitz zeta function. We know that

$$
\Gamma_{1}(s)=\frac{\Gamma(s)}{\sqrt{2 \pi}}
$$

from Lerch's formula (1894) for the usual gamma function $\Gamma(s)$. As explained by Manin [12, p. 134] $\Gamma_{1}(s)$ is viewed as the zeta function of the "dual infinite dimensional projective space over $\mathbf{F}_{1} " \check{\mathbf{P}}{ }^{\infty}\left(\mathbf{F}_{1}\right)$ :

$$
\Gamma_{1}(s)=\zeta\left(s, \check{\mathbf{P}}^{\infty}\left(\mathbf{F}_{1}\right)\right)=\left(\prod_{n \geq 0}(s+n)\right)^{-1}
$$

Then, $\Gamma_{r}(s)$ is obtained as an absolute tensor product:

$$
\Gamma_{r}(s)=\left(\Gamma_{1}(s)^{\otimes r}\right)^{(-1)^{r-1}}
$$

Hence, from the viewpoint of Quillen [14] and Lichtenbaum [11], it would be interesting to study values at $s=-n(n \geq 0)$ of $\Gamma_{r}(s)$.

It turns out that $\Gamma_{r}(s)$ has a functional equation $s \leftrightarrow r-s$, and that the value at $s=-n$ is intimately related to the value at $s=r+n$. Here we describe the cases $r=1$ and 2. (We refer to [9] for a more general treatment.)

Theorem 4. Let $n \geq 0$ be an integer. Then:
(1) $\left.\Gamma_{1}(s)(s+n)\right|_{s=-n}=(-1)^{n} /(n!\sqrt{2 \pi})$.
(2) $\Gamma_{1}(1+n)=n!/ \sqrt{2 \pi}$.

Theorem 5. Let $n \geq 0$ be an integer. Then:
(1)

$$
\begin{aligned}
& \left.\Gamma_{2}(s)(s+n)^{n+1}\right|_{s=-n} \\
& =(-1)^{(n(n+1)) / 2} e^{\zeta^{\prime}(-1)} \\
& \quad \times(2 \pi)^{-(n+1) / 2}(1!2!\cdots n!)^{-1}
\end{aligned}
$$

(2) $\Gamma_{2}(2+n)=e^{\zeta^{\prime}(-1)}(2 \pi)^{(n+1) / 2}(1!2!\cdots n!)^{-1}$.

It is easy to identify values in Theorems 4 and 5 by $\# G L_{n}\left(\mathbf{F}_{1}\right)=n!=\# S_{n}$ and it might be possible as in [4] to interpret these values via the order of a suitable $K$-group of $\check{\mathbf{P}}^{\infty}\left(\mathbf{F}_{1}\right)^{\otimes r}$ for $r=1$ and 2 ; we notice that Manin [12] and Soulé [15] identify the $K$-group $K_{m}\left(\mathbf{F}_{1}\right)$ as the stable homotopy group $\pi_{m}^{s}$.

We remark that relations between (1) and (2) in Theorems 4 and 5 are indicating the functional equation $\Gamma_{r}(s) \leftrightarrow \Gamma_{r}(r-s)$ and they are reformulated using the derivatives of the multiple sine function

$$
S_{r}(s)=\Gamma_{r}(s)^{-1} \Gamma_{r}(r-s)^{(-1)^{r}}
$$

(see [5] for the general theory) as follows:
Theorem 6. Let $n \geq 0$ be an integer. Then:
(1) $\left.\left(S_{1}(s) /(s+n)\right)\right|_{s=-n}=(-1)^{n} 2 \pi$.
(2) $\left.\left(S_{2}(s) /(s+n)^{n+1}\right)\right|_{s=-n}=(-1)^{(n(n+1)) / 2}$ $(2 \pi)^{n+1}$.
It would be valuable to report simple facts about absolute tensor products of basic zeta functions over $\mathbf{F}_{1}$. Zeta functions of the affine space and the projective space over $\mathbf{F}_{1}$ are given as

$$
\zeta\left(s, \mathbf{A}_{\mathbf{F}_{1}}^{k}\right)=\frac{1}{s-k}
$$

and

$$
\zeta\left(s, \mathbf{P}_{\mathbf{F}_{1}}^{k}\right)=\frac{1}{s(s-1) \cdots(s-k)}
$$

Hence the corresponding absolute tensor products are
$\zeta\left(s, \mathbf{A}_{\mathbf{F}_{1}}^{k_{1}}\right) \otimes \cdots \otimes \zeta\left(s, \mathbf{A}_{\mathbf{F}_{1}}^{k_{r}}\right)=\left(s-\left(k_{1}+\cdots+k_{r}\right)\right)^{(-1)^{r}}$ and

$$
\begin{aligned}
& \zeta\left(s, \mathbf{P}_{\mathbf{F}_{1}}^{k_{1}}\right) \otimes \cdots \otimes \zeta\left(s, \mathbf{P}_{\mathbf{F}_{1}}^{k_{r}}\right) \\
& =\prod_{\substack{j_{i}=0, \ldots, k_{i} \\
(i=1, \ldots, r)}}\left(s-\left(j_{1}+\cdots+j_{r}\right)\right)^{(-1)^{r}}
\end{aligned}
$$

We refer to [4] for further study.
2. $\zeta\left(s, \mathbf{F}_{\boldsymbol{p}_{1}}\right) \otimes \cdots \otimes \zeta\left(s, \mathbf{F}_{\boldsymbol{p}_{r}}\right)$.

## Proof of Theorem 1.

(1) $p \neq q$ case: From the functional equation (Theorem $\mathrm{A}(4))$ for $\zeta_{p, q}(s)$ we have

$$
\begin{aligned}
& \zeta_{p, q}(-m) \\
& \begin{array}{l}
=\zeta_{p, q}(m)^{-1}(p q)^{m / 2}\left(1-p^{-m}\right)\left(1-q^{-m}\right) \\
\quad \times \exp \left(\frac{i(\log p)(\log q)}{4 \pi} m^{2}\right. \\
\left.\quad-\frac{\pi i}{6}\left(\frac{\log q}{\log p}+\frac{\log p}{\log q}+3\right)\right)
\end{array}
\end{aligned}
$$

with

$$
\begin{aligned}
& \zeta_{p, q}(m) \\
& \begin{aligned}
=\exp ( & -\frac{i}{2} \sum_{n=1}^{\infty} \frac{\cot (\pi n(\log p / \log q))}{n} p^{-n m} \\
& -\frac{i}{2} \sum_{n=1}^{\infty} \frac{\cot (\pi n(\log q / \log p))}{n} q^{-n m} \\
& \left.-\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n} p^{-n m}-\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n} q^{-n m}\right)
\end{aligned}
\end{aligned}
$$

Hence we get

$$
\begin{aligned}
& \zeta_{p, q}(-m) \\
& \begin{array}{l}
=\sqrt{\left(p^{m}-1\right)\left(q^{m}-1\right)} \\
\quad \times \exp \left(\frac{i}{2} \sum_{n=1}^{\infty} \frac{\cot (\pi n(\log p / \log q))}{n} p^{-n m}\right. \\
\quad+\frac{i}{2} \sum_{n=1}^{\infty} \frac{\cot (\pi n(\log q / \log p))}{n} q^{-n m} \\
\quad+\frac{i(\log p)(\log q)}{4 \pi} m^{2} \\
\left.\quad-\frac{\pi i}{6}\left(\frac{\log q}{\log p}+\frac{\log p}{\log q}+3\right)\right)
\end{array}
\end{aligned}
$$

Thus

$$
\left|\zeta_{p, q}(-m)\right|=\sqrt{\left(p^{m}-1\right)\left(q^{m}-1\right)}
$$

(2) $p=q$ case: The functional equation (Theorem B (4)) implies that

$$
\begin{aligned}
\zeta_{p, p}(-m)= & \zeta_{p, p}(m)^{-1} p^{m}\left(1-p^{-m}\right)^{2} \\
& \times \exp \left(\frac{i(\log p)^{2}}{4 \pi} m^{2}-\frac{5 \pi i}{6}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
\zeta_{p, p}(m)=\exp & \left(\frac{i}{2 \pi} \operatorname{Li}_{2}\left(p^{-m}\right)\right. \\
& \left.-\left(1-\frac{i \log p}{2 \pi} m\right) \operatorname{Li}_{1}\left(p^{-m}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
=\left(1-p^{-m}\right) \exp ( & \frac{i}{2 \pi} \operatorname{Li}_{2}\left(p^{-m}\right) \\
& \left.+\frac{i \log p}{2 \pi} m \operatorname{Li}_{1}\left(p^{-m}\right)\right),
\end{aligned}
$$

where we use the polylogarithm

$$
\operatorname{Li}_{r}(u)=\sum_{n=1}^{\infty} \frac{u^{n}}{n^{r}}
$$

Hence

$$
\begin{aligned}
\zeta_{p, p}(-m)= & \left(p^{m}-1\right) \\
& \times \exp \left(-\frac{i}{2 \pi} \operatorname{Li}_{2}\left(p^{-m}\right)-\frac{i(\log p)^{2}}{4 \pi} m^{2}\right. \\
& \left.+\frac{i \log p}{2 \pi} m \log \left(p^{m}-1\right)-\frac{5 \pi i}{6}\right)
\end{aligned}
$$

gives

$$
\left|\zeta_{p, p}(-m)\right|=p^{m}-1
$$

Proof of Theorem 2. The calculation in the above proof of Theorem 1 shows that

$$
\zeta_{2,2}(-1)=\exp \left(-\frac{i}{2 \pi} \operatorname{Li}_{2}\left(\frac{1}{2}\right)-\frac{i(\log 2)^{2}}{4 \pi}-\frac{5 \pi i}{6}\right) .
$$

Hence, using Euler's result

$$
\operatorname{Li}_{2}\left(\frac{1}{2}\right)=\frac{\pi^{2}}{12}-\frac{1}{2}(\log 2)^{2}
$$

we have

$$
\begin{aligned}
\zeta_{2,2}(-1) & =\exp \left(-\frac{7 \pi}{8} i\right) \\
& =-e^{(\pi / 8) i} \\
& =-\frac{\sqrt{2+\sqrt{2}}}{2}-i \frac{\sqrt{2-\sqrt{2}}}{2}
\end{aligned}
$$

Proof of Theorem 3. From the explicit expression for the triple sine function $S_{3}(x)$ shown in [5] using another multiple sine function $\mathcal{S}_{r}(x)$ we get

$$
S_{3}(x)=e^{\zeta(3) / 4 \pi^{2}} \mathcal{S}_{3}(x)^{1 / 2} \mathcal{S}_{2}(x)^{-3 / 2} \mathcal{S}_{1}(x)
$$

and

$$
\begin{aligned}
\zeta_{p, p, p}(s)= & S_{3}\left(\frac{i s \log p}{2 \pi}\right)^{-1} \\
\times & \exp \left(-\frac{(\log p)^{3}}{48 \pi^{2}} s^{3}-i \frac{3(\log p)^{2}}{16 \pi} s^{2}\right. \\
& \left.\quad+\frac{\log p}{2} s+i \frac{\pi}{2}\right)
\end{aligned}
$$

in $\operatorname{Re}(s)>0$ at first. Since the both sides are meromorphic functions on all $s \in \mathbf{C}$, this identity holds for all $s \in \mathbf{C}$. In particular

$$
\begin{aligned}
\zeta_{p, p, p}(-s)= & S_{3}\left(-\frac{i s \log p}{2 \pi}\right)^{-1} \\
\times & \exp \left(\frac{(\log p)^{3}}{48 \pi^{2}} s^{3}-i \frac{3(\log p)^{2}}{16 \pi} s^{2}\right. \\
& \left.-\frac{\log p}{2} s+i \frac{\pi}{2}\right)
\end{aligned}
$$

Hence, using

$$
\begin{aligned}
S_{3}(-x) & =e^{\zeta(3) / 4 \pi^{2}} \mathcal{S}_{3}(-x)^{1 / 2} \mathcal{S}_{2}(-x)^{-3 / 2} \mathcal{S}_{1}(-x) \\
& =-e^{\zeta(3) / 4 \pi^{2}} \mathcal{S}_{3}(x)^{1 / 2} \mathcal{S}_{2}(x)^{3 / 2} \mathcal{S}_{1}(x) \\
& =-S_{3}(x) \mathcal{S}_{2}(x)^{3}
\end{aligned}
$$

we have

$$
\begin{aligned}
\zeta_{p, p, p}(-s)= & -S_{3}\left(\frac{i s \log p}{2 \pi}\right)^{-1} \mathcal{S}_{2}\left(\frac{i s \log p}{2 \pi}\right)^{-3} \\
& \times \exp \left(\frac{(\log p)^{3}}{48 \pi^{2}} s^{3}-i \frac{3(\log p)^{2}}{16 \pi} s^{2}\right. \\
& \left.-\frac{\log p}{2} s+i \frac{\pi}{2}\right) \\
= & -\zeta_{p, p, p}(s) \mathcal{S}_{2}\left(\frac{i s \log p}{2 \pi}\right)^{-3} \\
& \times \exp \left(\frac{(\log p)^{3}}{24 \pi^{2}} s^{3}-(\log p) s\right)
\end{aligned}
$$

In particular

$$
\begin{aligned}
\zeta_{p, p, p}(-m)= & -\zeta_{p, p, p}(m) \mathcal{S}_{2}\left(\frac{i m \log p}{2 \pi}\right)^{-3} \\
& \times \exp \left(\frac{(\log p)^{3}}{24 \pi^{2}} m^{3}-(\log p) m\right)
\end{aligned}
$$

Since

$$
\left|\mathcal{S}_{2}(x)\right|=1 \text { for } x \in i \mathbf{R}
$$

we see that

$$
\begin{aligned}
& \left|\zeta_{p, p, p}(-m)\right| \\
& \quad=\left|\zeta_{p, p, p}(m)\right| \exp \left(\frac{(\log p)^{3}}{24 \pi^{2}} m^{3}-(\log p) m\right)
\end{aligned}
$$

Hence

$$
\left|\zeta_{2,2,2}(-1)\right|=\left|\zeta_{2,2,2}(1)\right| \exp \left(\frac{(\log 2)^{3}}{24 \pi^{2}}-\log 2\right)
$$

with

$$
\begin{aligned}
& \left|\zeta_{2,2,2}(1)\right| \\
& =\exp \left(-\frac{1}{4 \pi^{2}} \operatorname{Li}_{3}\left(\frac{1}{2}\right)-\frac{\log 2}{4 \pi^{2}} \operatorname{Li}_{2}\left(\frac{1}{2}\right)\right. \\
& \left.\quad+\left(-\frac{(\log 2)^{2}}{8 \pi^{2}}+1\right) \operatorname{Li}_{1}\left(\frac{1}{2}\right)\right) .
\end{aligned}
$$

Thus, from

$$
\begin{aligned}
\mathrm{Li}_{1}\left(\frac{1}{2}\right) & =\log 2 \\
\mathrm{Li}_{2}\left(\frac{1}{2}\right) & =\frac{\pi^{2}}{12}-\frac{1}{2}(\log 2)^{2} \\
\mathrm{Li}_{3}\left(\frac{1}{2}\right) & =\frac{7}{8} \zeta(3)-\frac{\pi^{2}}{12} \log 2+\frac{(\log 2)^{3}}{6}
\end{aligned}
$$

we have

$$
\left|\zeta_{2,2,2}(1)\right|=\exp \left(-\frac{7 \zeta(3)}{32 \pi^{2}}-\frac{(\log 2)^{3}}{24 \pi^{2}}+\log 2\right)
$$

and consequently

$$
\left|\zeta_{2,2,2}(-1)\right|=\exp \left(-\frac{7 \zeta(3)}{32 \pi^{2}}\right) .
$$

## 3. $\Gamma_{r}(s)$.

## Proof of Theorem 4.

(1) Notice that

$$
\begin{aligned}
\Gamma_{1}(s)(s+n) & =\frac{1}{\sqrt{2 \pi}} \Gamma(s)(s+n) \\
& =\frac{1}{\sqrt{2 \pi}} \frac{\Gamma(s) s(s+1) \cdots(s+n)}{s(s+1) \cdots(s+n-1)} \\
& =\frac{1}{\sqrt{2 \pi}} \frac{\Gamma(s+n+1)}{s(s+1) \cdots(s+n-1)} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left.\Gamma_{1}(s)(s+n)\right|_{s=-n} & =\frac{1}{\sqrt{2 \pi}} \frac{\Gamma(1)}{(-n)(-n+1) \cdots(-1)} \\
& =(-1)^{n} \frac{1}{\sqrt{2 \pi}} \cdot \frac{1}{n!}
\end{aligned}
$$

(2) This is easily seen from $\Gamma_{1}(s)=\Gamma(s) / \sqrt{2 \pi}$ and the well-known formula $\Gamma(n+1)=n$ !.

## Proof of Theorem 5.

(1) From

$$
\begin{aligned}
\Gamma_{2}(s) & =\Gamma_{2}(s+1) \Gamma_{1}(s) \\
& =\Gamma_{2}(s+2) \Gamma_{1}(s) \Gamma_{1}(s+1) \\
& =\cdots \\
& =\Gamma_{2}(s+n+1) \Gamma_{1}(s) \Gamma_{1}(s+1) \cdots \Gamma_{1}(s+n)
\end{aligned}
$$

we have

$$
\begin{aligned}
&\left.\Gamma_{2}(s)(s+n)^{n+1}\right|_{s=-n} \\
&= \Gamma_{2}(s+n+1)\left(\Gamma_{1}(s)(s+n)\right)\left(\Gamma_{1}(s+1)(s+n)\right) \\
&\left.\cdots\left(\Gamma_{1}(s+n)(s+n)\right)\right|_{s=-n} \\
&= \Gamma_{2}(1)\left(\frac{(-1)^{n}}{\sqrt{2 \pi}} \frac{1}{n!}\right)\left(\frac{(-1)^{n-1}}{\sqrt{2 \pi}} \frac{1}{(n-1)!}\right) \\
& \cdots\left(\frac{(-1)^{0}}{\sqrt{2 \pi}} \frac{1}{0!}\right) \\
&= e^{\zeta^{\prime}(-1)}(-1)^{(n(n+1)) / 2}(2 \pi)^{-(n+1) / 2} \\
& \times(1!2!\cdots n!)^{-1}
\end{aligned}
$$

where we used the fact

$$
\Gamma_{2}(1)=\exp \left(\zeta_{2}^{\prime}(0,1)\right)=\exp \left(\zeta^{\prime}(-1)\right)
$$

(2) Using the periodicity $\Gamma_{2}(s+1)=\Gamma_{2}(s) \Gamma_{1}(s)^{-1}$ we get

$$
\begin{aligned}
\Gamma_{2}(2+n)= & \Gamma_{2}(1+n) \Gamma_{1}(1+n)^{-1} \\
\Gamma_{2}(1+n)= & \Gamma_{2}(n) \Gamma_{1}(n)^{-1} \\
& \cdots \\
\Gamma_{2}(2)= & \Gamma_{2}(1) \Gamma_{1}(1)^{-1} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\Gamma_{2}(2+n) & =\Gamma_{2}(1)\left(\Gamma_{1}(1) \Gamma_{1}(2) \cdots \Gamma_{1}(1+n)\right)^{-1} \\
& =e^{\zeta^{\prime}(-1)}(2 \pi)^{(n+1) / 2}(1!2!\cdots n!)^{-1}
\end{aligned}
$$

## Proof of Theorem 6.

(1) Since $S_{1}(s)=2 \sin (\pi s)$, it is easy to see that

$$
S_{1}^{\prime}(-n)=(-1)^{n} 2 \pi
$$

(2) We show that

$$
\begin{aligned}
& S_{2}(s) \\
& =(-1)^{(n(n+1)) / 2}(2 \pi)^{n+1}(s+n)^{n+1} \\
& \quad+O\left((s+n)^{n+2}\right)
\end{aligned}
$$

as $s \rightarrow-n$. First, the case $n=0$ is equivalent to $S_{2}^{\prime}(0)=2 \pi$, which is proved in [3]. Next, for a general $n \geq 1$ we get

$$
S_{2}(s-n)=(-1)^{(n(n+1)) / 2} S_{2}(s) S_{1}(s)^{n}
$$

from iterating the process

$$
S_{2}(s-1)=S_{2}(s) S_{1}(s-1)=-S_{2}(s) S_{1}(s)
$$

Hence

$$
\begin{aligned}
& S_{2}(s-n) \\
& =(-1)^{(n(n+1)) / 2}\left(2 \pi s+O\left(s^{2}\right)\right)\left(2 \pi s+O\left(s^{2}\right)\right)^{n} \\
& =(-1)^{(n(n+1)) / 2}(2 \pi)^{n+1} s^{n+1}+O\left(s^{n+2}\right)
\end{aligned}
$$

as $s \rightarrow 0$. Thus

$$
\begin{aligned}
& S_{2}(s) \\
& =(-1)^{(n(n+1)) / 2}(2 \pi)^{n+1}(s+n)^{n+1} \\
& \quad+O\left((s+n)^{n+2}\right)
\end{aligned}
$$

as $s \rightarrow-n$. Consequently we obtain the desired

$$
S_{2}^{(n+1)}(-n)=(-1)^{(n(n+1)) / 2}(2 \pi)^{n+1}(n+1)!
$$

## References

[ 1] E. W. Barnes, On the theory of the multiple gamma function, Trans. Cambridge Philos. Soc., 19 (1904), 374-425.
[2] N. Kurokawa, Multiple zeta functions: an example, in Zeta functions in geometry (Tokyo, 1990), 219-226, Adv. Stud. Pure Math., 21, Kinokuniya, Tokyo.
[3] N. Kurokawa, Derivatives of multiple sine functions, Proc. Japan Acad., 80A (2004), no. 5, 65-69.
[4] N. Kurokawa, Zeta functions over $\mathbf{F}_{1}$, Proc. Japan Acad., 81A (2005), no. 10, 180-184.
[5] N. Kurokawa and S. Koyama, Multiple sine functions, Forum Math. 15 (2003), no. 6, 839-876.
[6] S. Koyama and N. Kurokawa, Kummer's formula for multiple gamma functions, J. Ramanujan Math. Soc. 18 (2003), no. 1, 87-107.
[ 7 ] S. Koyama and N. Kurokawa, Multiple zeta functions: the double sine function and the signed double Poisson summation formula, Compos. Math. 140 (2004), no. 5, 1176-1190.
[ 8 ] S. Koyama and N. Kurokawa, Multiple Euler Products, Proceedings of the St. Petersburg Math. Soc. 11 (2005) 123-166. (In Russian; The English version to be published from the American Math. Soc.).
[ 9 ] S. Koyama and N. Kurokawa, Values of multiple zeta functions. (In preparation).
[10] N. Kurokawa, H. Ochiai and M. Wakayama, Absolute derivations and zeta functions, Doc. Math. 2003, Extra Vol., 565-584 (electronic).
[11] S. Lichtenbaum, Values of zeta-functions, étale cohomology, and algebraic $K$-theory, in Algebraic K-theory, II: "Classical" algebraic K-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), 489-501. Lecture Notes in Math., 342, Springer, Berlin.
[12] Yu. I. Manin, Lectures on zeta functions and motives (according to Deninger and Kurokawa), Astérisque No. 228 (1995), 4, 121-163.
[13] Yu. I. Manin, The notion of dimension in geometry and algebra, (2005). (Preprint). math.AG/0502016.
[14] D. Quillen, On the cohomology and $K$-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552-586.
[15] C. Soulé, Les variétés sur le corps à un élément, Mosc. Math. J. 4 (2004), no. 1, 217-244, 312.


[^0]:    2000 Mathematics Subject Classification. 11M06.

