Weighted L^p Sobolev-Lieb-Thirring inequalities

By Kazuya Tachizawa

Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Communicated by Shigefumi MORI, M. J. A., Oct. 12, 2005)

Abstract: We give a weighted L^p version of the Sobolev-Lieb-Thirring inequality for suborthonormal functions.

Key words: Sobolev-Lieb-Thirring inequalities; A_p -weights.

1. Introduction. In 1976 Lieb and Thirring proved the following inequality.

Theorem 1.1 ([4]). Let $n \in \mathbf{N}$. Then there exists a positive constant c_n such that for every family $\{\phi_i\}_{i=1}^N$ in $H^1(\mathbf{R}^n)$ which is orthonormal in $L^2(\mathbf{R}^n)$, we have

(1)
$$\int_{\mathbf{R}^n} \left(\sum_{i=1}^N |\phi_i(x)|^2 \right)^{1+2/n} dx \le c_n \sum_{i=1}^N \|\nabla \phi_i\|^2.$$

In this theorem $H^1(\mathbf{R}^n)$ denotes the Sobolev space and $\|\cdot\|$ is the norm of $L^2(\mathbf{R}^n)$. In [4] Lieb and Thirring applied this inequality to the problem of the stability of matter. Ghidaglia, Marion, and Temam proved a generalization of (1) under the suborthonormal condition on $\{\phi_i\}$, where $\{\phi_i\}_{i=1}^N$ in $L^2(\mathbf{R}^n)$ is called suborthonormal if the inequality

$$\sum_{i,j=1}^{N} \xi_i \overline{\xi_j}(\phi_i, \phi_j) \le \sum_{i=1}^{N} |\xi_i|^2$$

holds for all $\xi_i \in \mathbf{C}$, i = 1, ..., N, where (\cdot, \cdot) means the L^2 inner product ([2]). They applied the inequality (1) to the estimate of the dimension of attractors associated with partial differential equations. In this paper we shall give a weighted L^p version of (1) under the suborthonormal condition on $\{\phi_i\}$.

For the statement of our result we need to recall the definition of A_p -weights (c.f. [3, 5]). By a cube in \mathbf{R}^n we mean a cube which sides are parallel to coordinate axes. Let w be a non-negative, locally integrable function on \mathbf{R}^n . We say that w is an A_p -weight for 1 if there exists a positiveconstant <math>C such that

$$\frac{1}{|Q|} \int_Q w(x) \, dx \left(\frac{1}{|Q|} \int_Q w(x)^{-1/(p-1)} \, dx \right)^{p-1} \le C$$

for all cubes $Q \subset \mathbf{R}^n$. For example, $w(x) = |x|^{\alpha}$ is an A_p -weight when $-n < \alpha < n(p-1)$.

We say that w is an A_1 -weight if there exists a positive constant C such that

$$\frac{1}{|Q|}\int_Q w(y)\,dy \leq Cw(x) \quad \text{a.e.} \quad x\in Q$$

for all cubes $Q \subset \mathbf{R}^n$. If $-n < \alpha \leq 0$, then $w(x) = |x|^{\alpha}$ is an A_1 -weight. Let A_p be the class of A_p -weights. The inclusion $A_p \subset A_q$ holds for p < q.

A nonnegative, locally integrable function w on \mathbf{R}^n is called a weight function. For a weight function w we define

$$L^{p}(w) = \left\{ f \colon \text{measurable on } \mathbf{R}^{n}, \\ \int_{\mathbf{R}^{n}} |f(x)|^{p} w(x) \, dx < \infty \right\}.$$

The following is a conclusion of [7, Theorem 1.2] and [6, Lemma 3.2].

Theorem 1.2. Let $n \in \mathbf{N}$, $3 \leq n$, $w \in A_2$, and $w^{-n/2} \in A_{n/2}$. Then there exists a positive constant c such that for every family $\{\phi_i\}_{i=1}^N$ in $L^2(\mathbf{R}^n)$ which is suborthonormal in $L^2(\mathbf{R}^n)$ and $|\nabla \phi_i| \in L^2(w)$, i = 1, ..., N, we have

$$\int_{\mathbf{R}^n} \left(\sum_{i=1}^N |\phi_i(x)|^2 \right)^{1+2/n} w(x) \, dx$$
$$\leq c \sum_{i=1}^N \int_{\mathbf{R}^n} |\nabla \phi_i(x)|^2 w(x) \, dx,$$

where c depends only on n and w.

By using this theorem we can prove the following weighted L^p version of the Sobolev-Lieb-Thirring inequality.

Theorem 1.3. Let $n \in \mathbb{N}$ and $3 \leq n$. Let $2n/(n+2) , <math>p \neq 2$, and w be a weight function. When p > 2, we assume that $w^{n/(n-p)} \in$

²⁰⁰⁰ Mathematics Subject Classification. Primary 26D15; Secondary 42B25.

 $A_{p(n-2)/(2(n-p))}$. When p < 2, we assume that $w^{n/(n-2)} \in A_1$.

Then there exists a positive constant c such that for every family $\{\phi_i\}_{i=1}^N$ in $L^2(\mathbf{R}^n)$ which is suborthonormal in $L^2(\mathbf{R}^n)$ and $|\nabla \phi_i| \in L^p(w)$, $i = 1, \ldots, N$, we have

$$\int_{\mathbf{R}^n} \left(\sum_{i=1}^N |\phi_i(x)|^2 \right)^{(1+2/n)p/2} w(x) \, dx$$
$$\leq c \int_{\mathbf{R}^n} \left(\sum_{i=1}^N |\nabla \phi_i(x)|^2 \right)^{p/2} w(x) \, dx,$$

where c depends only on n, p and w.

This is a new result even in the case $w \equiv 1$. When 2 , an example of <math>w is given by $w(x) = |x|^{\alpha}$, $-n + p < \alpha < n(p-2)/2$. When 2n/(n+2) , an example of <math>w is given by $w(x) = |x|^{\alpha}$, $-n+2 < \alpha \leq 0$.

2. Proof of Theorem 1.3. Let M be the Hardy-Littlewood maximal operator, that is,

$$M(f)(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f(y)| \, dy,$$

where f is a locally integrable function on \mathbb{R}^n and the supremum is taken over all cubes Q which contain x. The following proposition is proved in [3, Chapter IV] or [5, Chapter V].

Proposition 2.1. (i) Let $1 and w be a weight function on <math>\mathbb{R}^n$. Then there exists a positive constant c such that

$$\int_{\mathbf{R}^n} M(f)^p w \, dx \le c \int_{\mathbf{R}^n} |f|^p w \, dx$$

for all $f \in L^p(w)$ if and only if $w \in A_p$.

- (ii) Let $1 and <math>w \in A_p$. Then there exists $a \ q \in (1, p)$ such that $w \in A_q$.
- (iii) Let $0 < \tau < 1$ and f be a locally integrable function on \mathbf{R}^n such that $M(f)(x) < \infty$ a.e. Then $M(f)^{\tau} \in A_1$.
- (iv) Let $1 . Then <math>w \in A_p$ if and only if $w^{1-p'} \in A_{p'}$, where $p^{-1} + {p'}^{-1} = 1$.
- (v) Let $1 and <math>w_1, w_2 \in A_1$. Then $w_1 w_2^{1-p} \in A_p$.

Proof of Theorem 1.3. Our proof is very similar to that of the extrapolation theorem by Rubio de Francia (c.f. [1, Theorem 7.8]). In our proof the integral means that over \mathbf{R}^n .

Let 2 and <math>2/p + 1/q = 1. We remark that the assumption $w^{n/(n-p)} \in A_{p(n-2)/(2(n-p))}$ leads to $w \in A_p$ by an easy calculation. Let $u \in L^q(w), u \ge 0$, and $||u||_{L^q(w)} = 1$.

Since $w^{n/(n-p)} \in A_{p(n-2)/(2(n-p))}$, we have $w^{-2/(p-2)} \in A_{p(n-2)/(n(p-2))}$ by (iv) of Proposition 2.1. Hence there exists a γ such that $n/(n-2) < \gamma < q$ and $w^{-2/(p-2)} \in A_{p/(\gamma(p-2))}$ by (ii) of Proposition 2.1. Then we have $uw \leq M((uw)^{\gamma})^{1/\gamma}$ a.e. Because

 $w^{-2q/p} = w^{-2/(p-2)} \in A_{p/(\gamma(p-2))} = A_{q/\gamma}$

and

(2)
$$\int M((uw)^{\gamma})^{q/\gamma} w^{-2q/p} dx$$
$$\leq c \int (uw)^q w^{-2q/p} dx = c \int u^q w dx = c$$

by (i) of Proposition 2.1, we get $M((uw)^{\gamma})(x) < \infty$ a.e. Hence $M((uw)^{\gamma})^{1/\gamma} \in A_1$ by (iii) of Proposition 2.1. Let $\alpha = n/((n-2)\gamma)$. Then $0 < \alpha < 1$ and

$$M((uw)^{\gamma})^{-n/(2\gamma)} = \{M((uw)^{\gamma})^{\alpha}\}^{1-n/2} \in A_{n/2},$$

where we used $M((uw)^{\gamma})^{\alpha} \in A_1$ and (v) of Proposition 2.1. Let

$$\rho(x) = \sum_{i=1}^{N} |\phi_i(x)|^2.$$

Then we have

$$\int \rho^{1+2/n} uw \, dx$$

$$\leq \int \rho^{1+2/n} M((uw)^{\gamma})^{1/\gamma} \, dx$$

$$\leq c \int \left(\sum_{i=1}^{N} |\nabla \phi_i|^2 \right) M((uw)^{\gamma})^{1/\gamma} \, dx$$

$$\leq c \left(\int \left(\sum_{i=1}^{N} |\nabla \phi_i|^2 \right)^{p/2} w \, dx \right)^{2/p}$$

$$\times \left(\int M((uw)^{\gamma})^{q/\gamma} w^{-2q/p} \, dx \right)^{1/q}$$

$$\leq c \left(\int \left(\sum_{i=1}^{N} |\nabla \phi_i|^2 \right)^{p/2} w \, dx \right)^{2/p}$$

where we used Theorem 1.2 and (2). If we take the supremum for all $u \in L^q(w)$, $u \ge 0$, and $||u||_{L^q(w)} = 1$, then we get

$$\left(\int \rho^{(1+2/n)p/2} w \, dx\right)^{2/p}$$

142

$$\leq c \left(\int \left(\sum_{i=1}^{N} |\nabla \phi_i|^2 \right)^{p/2} w \, dx \right)^{2/p}.$$

Next we consider the case 2n/(n+2) < p< 2. We remark that $w \in A_1$ by the assumption $w^{n/(n-2)} \in A_1$. Let

$$f = \left(\sum_{i=1}^{N} |\nabla \phi_i|^2\right)^{1/2}.$$

We can take γ such that $(2-p)n/2 < \gamma < p$. Then

$$\int M(f^{\gamma})^{p/\gamma} w \, dx \le c \int f^p w \, dx < \infty,$$

where we used $w \in A_1 \subset A_{p/\gamma}$ and (i) of Proposition 2.1. Hence we have $M(f^{\gamma})(x) < \infty$ a.e. and

$$M(f^{\gamma})^{(2-p)n/(2\gamma)} \in A_1$$

by (iii) of Proposition 2.1. Furthermore we have

$$M(f^{\gamma})^{-(2-p)/\gamma}w \in A_2,$$

where we used

$$M(f^{\gamma})^{(2-p)/\gamma} \in A_1, \quad w \in A_1,$$

and (v) of Proposition 2.1. Moreover

$$\{M(f^{\gamma})^{-(2-p)/\gamma}w\}^{-n/2}$$

= $M(f^{\gamma})^{(2-p)n/(2\gamma)}(w^{n/(n-2)})^{(1-n/2)} \in A_{n/2}$

because $w^{n/(n-2)} \in A_1$. Therefore

$$\int \rho^{(1+2/n)p/2} w \, dx$$

= $\int \rho^{(1+2/n)p/2} w M(f^{\gamma})^{-(2-p)p/(2\gamma)} \times M(f^{\gamma})^{(2-p)p/(2\gamma)} \, dx$
 $\leq \left(\int \rho^{1+2/n} M(f^{\gamma})^{-(2-p)/\gamma} w \, dx\right)^{p/2} \times \left(\int M(f^{\gamma})^{p/\gamma} w \, dx\right)^{1-p/2}$
 $\leq c \left(\int f^2 M(f^{\gamma})^{-(2-p)/\gamma} w \, dx\right)^{p/2} \times \left(\int f^p w \, dx\right)^{1-p/2}$

$$\leq c \left(\int M(f^{\gamma})^{2/\gamma} M(f^{\gamma})^{-(2-p)/\gamma} w \, dx \right)^{p/2} \\ \times \left(\int f^p w \, dx \right)^{1-p/2} \\ \leq c \left(\int M(f^{\gamma})^{p/\gamma} w \, dx \right)^{p/2} \left(\int f^p w \, dx \right)^{1-p/2} \\ \leq c \int f^p w \, dx,$$

where we used Theorem 1.2 in the second inequality.

Acknowledgment. The author was partly supported by Grants-in-Aid for Scientific Research, The Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- J. Duoandikoetxea, Fourier analysis, Translated and revised from the 1995 Spanish original by David Cruz-Uribe, Amer. Math. Soc., Providence, RI, 2001.
- J.-M. Ghidaglia, M. Marion and R. Temam, Generalization of the Sobolev-Lieb-Thirring inequalities and applications to the dimension of attractors, Differential Integral Equations 1 (1988), no. 1, 1–21.
- [3] J. García-Cuerva and J.L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland, Amsterdam, 1985.
- [4] E. Lieb and W. Thirring, Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities, in *Studies in Mathematical Physics* (E. Lieb, B. Simon and A. Wightman eds.), Princeton University Press, Princeton, 1976, pp. 269–303.
- [5] E.M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993.
- [6] K. Tachizawa, On the moments of the negative eigenvalues of elliptic operators, J. Fourier Anal. Appl. 8 (2002), no. 3, 233–244.
- K. Tachizawa, Weighted Sobolev-Lieb-Thirring inequalities, Rev. Mat. Iberoamericana 21 (2005), no. 1, 67–85.

143

No. 8]