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Abstract: We give a weighted Lp version of the Sobolev-Lieb-Thirring inequality for sub-
orthonormal functions.
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1. Introduction. In 1976 Lieb and Thirring
proved the following inequality.

Theorem 1.1 ([4]). Let n ∈ N. Then there
exists a positive constant cn such that for every
family {φi}N

i=1 in H1(Rn) which is orthonormal in
L2(Rn), we have

(1)
∫
Rn

(
N∑

i=1

|φi(x)|2
)1+2/n

dx ≤ cn

N∑
i=1

‖∇φi‖2.

In this theorem H1(Rn) denotes the Sobolev
space and ‖·‖ is the norm of L2(Rn). In [4] Lieb and
Thirring applied this inequality to the problem of the
stability of matter. Ghidaglia, Marion, and Temam
proved a generalization of (1) under the suborthonor-
mal condition on {φi}, where {φi}N

i=1 in L2(Rn) is
called suborthonormal if the inequality

N∑
i,j=1

ξiξj(φi, φj) ≤
N∑

i=1

|ξi|2

holds for all ξi ∈ C, i = 1, . . . , N , where ( · , · ) means
the L2 inner product ([2]). They applied the inequal-
ity (1) to the estimate of the dimension of attractors
associated with partial differential equations. In this
paper we shall give a weighted Lp version of (1) un-
der the suborthonormal condition on {φi}.

For the statement of our result we need to re-
call the definition of Ap-weights (c.f. [3, 5]). By a
cube in Rn we mean a cube which sides are par-
allel to coordinate axes. Let w be a non-negative,
locally integrable function on Rn. We say that w is
an Ap-weight for 1 < p < ∞ if there exists a positive
constant C such that

1
|Q|

∫
Q

w(x) dx

(
1
|Q|

∫
Q

w(x)−1/(p−1) dx

)p−1

≤ C
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for all cubes Q ⊂ Rn. For example, w(x) = |x|α is
an Ap-weight when −n < α < n(p− 1).

We say that w is an A1-weight if there exists a
positive constant C such that

1
|Q|

∫
Q

w(y) dy ≤ Cw(x) a.e. x ∈ Q

for all cubes Q ⊂ Rn. If −n < α ≤ 0, then w(x) =
|x|α is an A1-weight. Let Ap be the class of Ap-
weights. The inclusion Ap ⊂ Aq holds for p < q.

A nonnegative, locally integrable function w on
Rn is called a weight function. For a weight function
w we define

Lp(w) =
{

f : measurable on Rn,∫
Rn

|f(x)|pw(x) dx < ∞
}

.

The following is a conclusion of [7, Theorem 1.2]
and [6, Lemma 3.2].

Theorem 1.2. Let n ∈ N, 3 ≤ n, w ∈ A2,
and w−n/2 ∈ An/2. Then there exists a positive con-
stant c such that for every family {φi}N

i=1 in L2(Rn)
which is suborthonormal in L2(Rn) and |∇φi| ∈
L2(w), i = 1, . . . , N , we have∫

Rn

(
N∑

i=1

|φi(x)|2
)1+2/n

w(x) dx

≤ c

N∑
i=1

∫
Rn

|∇φi(x)|2w(x) dx,

where c depends only on n and w.
By using this theorem we can prove the follow-

ing weighted Lp version of the Sobolev-Lieb-Thirring
inequality.

Theorem 1.3. Let n ∈ N and 3 ≤ n. Let
2n/(n + 2) < p < n, p 6= 2, and w be a weight
function. When p > 2, we assume that wn/(n−p) ∈
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Ap(n−2)/(2(n−p)). When p < 2, we assume that
wn/(n−2) ∈ A1.

Then there exists a positive constant c such that
for every family {φi}N

i=1 in L2(Rn) which is sub-
orthonormal in L2(Rn) and |∇φi| ∈ Lp(w), i =
1, . . . , N , we have∫

Rn

(
N∑

i=1

|φi(x)|2
)(1+2/n)p/2

w(x) dx

≤ c

∫
Rn

(
N∑

i=1

|∇φi(x)|2
)p/2

w(x) dx,

where c depends only on n, p and w.
This is a new result even in the case w ≡ 1.

When 2 < p < n, an example of w is given by w(x) =
|x|α, −n + p < α < n(p− 2)/2. When 2n/(n + 2) <

p < 2, an example of w is given by w(x) = |x|α,
−n + 2 < α ≤ 0.

2. Proof of Theorem 1.3. Let M be the
Hardy-Littlewood maximal operator, that is,

M(f)(x) = sup
x∈Q

1
|Q|

∫
Q

|f(y)| dy,

where f is a locally integrable function on Rn and
the supremum is taken over all cubes Q which con-
tain x. The following proposition is proved in [3,
Chapter IV] or [5, Chapter V].

Proposition 2.1. (i) Let 1 < p < ∞ and
w be a weight function on Rn. Then there exists a
positive constant c such that∫

Rn

M(f)pw dx ≤ c

∫
Rn

|f |pw dx

for all f ∈ Lp(w) if and only if w ∈ Ap.
(ii) Let 1 < p < ∞ and w ∈ Ap. Then there exists

a q ∈ (1, p) such that w ∈ Aq.
(iii) Let 0 < τ < 1 and f be a locally integrable func-

tion on Rn such that M(f)(x) < ∞ a.e. Then
M(f)τ ∈ A1.

(iv) Let 1 < p < ∞. Then w ∈ Ap if and only if
w1−p′ ∈ Ap′ , where p−1 + p′

−1 = 1.
(v) Let 1 < p < ∞ and w1, w2 ∈ A1. Then

w1w
1−p
2 ∈ Ap.

Proof of Theorem 1.3. Our proof is very
similar to that of the extrapolation theorem by Rubio
de Francia (c.f. [1, Theorem 7.8]). In our proof the
integral means that over Rn.

Let 2 < p < n and 2/p + 1/q = 1. We remark
that the assumption wn/(n−p) ∈ Ap(n−2)/(2(n−p))

leads to w ∈ Ap by an easy calculation. Let u ∈
Lq(w), u ≥ 0, and ‖u‖Lq(w) = 1.

Since wn/(n−p) ∈ Ap(n−2)/(2(n−p)), we have
w−2/(p−2) ∈ Ap(n−2)/(n(p−2)) by (iv) of Proposi-
tion 2.1. Hence there exists a γ such that n/(n −
2) < γ < q and w−2/(p−2) ∈ Ap/(γ(p−2)) by (ii) of
Proposition 2.1. Then we have uw ≤ M((uw)γ)1/γ

a.e. Because

w−2q/p = w−2/(p−2) ∈ Ap/(γ(p−2)) = Aq/γ

and

(2)

∫
M((uw)γ)q/γw−2q/p dx

≤ c

∫
(uw)qw−2q/p dx = c

∫
uqw dx = c

by (i) of Proposition 2.1, we get M((uw)γ)(x) < ∞
a.e. Hence M((uw)γ)1/γ ∈ A1 by (iii) of Proposi-
tion 2.1. Let α = n/((n − 2)γ). Then 0 < α < 1
and

M((uw)γ)−n/(2γ) = {M((uw)γ)α}1−n/2 ∈ An/2,

where we used M((uw)γ)α ∈ A1 and (v) of Proposi-
tion 2.1. Let

ρ(x) =
N∑

i=1

|φi(x)|2.

Then we have∫
ρ1+2/nuw dx

≤
∫

ρ1+2/nM((uw)γ)1/γ dx

≤ c

∫ ( N∑
i=1

|∇φi|2
)

M((uw)γ)1/γ dx

≤ c

∫ ( N∑
i=1

|∇φi|2
)p/2

w dx

2/p

×
(∫

M((uw)γ)q/γw−2q/p dx

)1/q

≤ c

∫ ( N∑
i=1

|∇φi|2
)p/2

w dx

2/p

where we used Theorem 1.2 and (2). If we take the
supremum for all u ∈ Lq(w), u ≥ 0, and ‖u‖Lq(w) =
1, then we get(∫

ρ(1+2/n)p/2w dx

)2/p
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≤ c

∫ ( N∑
i=1

|∇φi|2
)p/2

w dx

2/p

.

Next we consider the case 2n/(n + 2) < p

< 2. We remark that w ∈ A1 by the assumption
wn/(n−2) ∈ A1. Let

f =

(
N∑

i=1

|∇φi|2
)1/2

.

We can take γ such that (2− p)n/2 < γ < p. Then∫
M(fγ)p/γw dx ≤ c

∫
fpw dx < ∞,

where we used w ∈ A1 ⊂ Ap/γ and (i) of Proposi-
tion 2.1. Hence we have M(fγ)(x) < ∞ a.e. and

M(fγ)(2−p)n/(2γ) ∈ A1

by (iii) of Proposition 2.1. Furthermore we have

M(fγ)−(2−p)/γw ∈ A2,

where we used

M(fγ)(2−p)/γ ∈ A1, w ∈ A1,

and (v) of Proposition 2.1. Moreover

{M(fγ)−(2−p)/γw}−n/2

= M(fγ)(2−p)n/(2γ)(wn/(n−2))(1−n/2) ∈ An/2

because wn/(n−2) ∈ A1. Therefore∫
ρ(1+2/n)p/2w dx

=
∫

ρ(1+2/n)p/2wM(fγ)−(2−p)p/(2γ)

×M(fγ)(2−p)p/(2γ) dx

≤
(∫

ρ1+2/nM(fγ)−(2−p)/γw dx

)p/2

×
(∫

M(fγ)p/γw dx

)1−p/2

≤ c

(∫
f2M(fγ)−(2−p)/γw dx

)p/2

×
(∫

fpw dx

)1−p/2

≤ c

(∫
M(fγ)2/γM(fγ)−(2−p)/γw dx

)p/2

×
(∫

fpw dx

)1−p/2

≤ c

(∫
M(fγ)p/γw dx

)p/2(∫
fpw dx

)1−p/2

≤ c

∫
fpw dx,

where we used Theorem 1.2 in the second inequality.
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