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On the solution of 2 — dy? = +m
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Abstract:

An improvement of the Gauss’ algorithm for solving the diophantine equation

22 — dy? = +m is presented. As an application, multiple continued fraction method is proposed.
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decomposition.

1. Introduction.
ratic diophantine equation

AX? 4+ BXY +CY?+ DX +EY + F =0,

For solving a given quad-

all we have to do is to solve one of the diophantine
equations

(1) 2%+ dy* =m,
(2) 2? —dy* = +m

where d and m are suitable positive integers and
Vd ¢ Q because the degenerate cases Vd € Q and
m = 0 are easy (cf. [7, § 34, § 53]). There is a very ef-
ficient algorithm for solving (1) even if m is very large
(cf. [1]). So in this paper, we shall treat the equa-
tion (2). Gauss gave an efficient algorithm (cf. [3,
7, § 35]). Our algorithm is essentially the same as
Gauss’ one, but a little more efficient and simpler.
Let z and y be a primitive solution of (2),
namely a solution such that ged(z,y) = 1. Then
ged(y,m) = 1. So there exists an integer ¢ such that

(3) T =ty

From (2) and (3) we have +m = t?y? —dy? (mod m).
From ged(y, m) = 1, we have

(4) t?=d

Let a be z + vdy and @ be (o, ') = (z 4 Vdy,z —
Vdy). Then aa/ = 22 — dy? = +m. From (3) there
exists an integer z such that x = mz — ty. So

o = (mz —ty) + Vdy = mz + (—t + Vd)y.
Let a—1 be —t++/d and ag be m. Then o = ya_1 +

(mod m).

(mod m).
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Fig. 1. m < Vd.

zag and @ = yd_1 + zdy. Let L; be
Lt = <(mam)a (7t + \/&7 —t— \/g»z

={yd_1+zap|y,z € Z}.

Then & is an element of L; and for all ﬁ € Ly, there
exist y, z such that § = ya~; + zap and from (4)

BB = (mz —ty)* — dy®
= (t2 — d)y2
(5) B85 =0

Therefore for solving the equation (2), we first cal-
culate all ¢ which satisfy (4). If we have a prime de-
composition of m, we can calculate ¢ very efficiently
(cf. [2]). Secondly we search & # 0 = (0,0) in L,
such that |ac/| is the smallest. From (5), ac’ is a
multiple of m. If aa’ = +m, then we get a solution.
If |ae’| > 2m, then there is no solution in L.

2. Algorithm. Let t be a solution of (4). If
t' =t (mod m) then t' also satisfies (4). So we can
choose the smallest ¢ such that

(mod m),

(mod m).

) =—t+Vd<ag=m,
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o =—t—Vd< —a)=—m.

Moreover if m < v/d, then we have 0 < a_; (cf.
Fig. 1). For example, when m = 1, then a_; =
—[Vd] +Vd. We define

ai717ki = [Bi].

2

«

Let F; be the Fibonacci sequence, namely F; = Fy =
1, Fi41 = F; + F;—1. Then we have next theorem.

Theorem.
Vd+t 1
Bo = m ﬁiﬂ_ﬂi_ki.
The continued fraction expansion of By is
Bo = [ko, k1, ka2, ... ]

and there exist integers a;,b;, such that

ﬁi = @ s Oé,'a; = (—1) a;m.

FEven if a_1 <0, if Fop, > y/m, then we have
O<oz2k_1 <o < Qgpyy < -0

Moreover there exists positive integer ¢ (< 2d) such
that Bop, = Bak+e- So a; are periodic. If a; = 1 for
some i (2k < i < 2k+{), then we have a solution «;
i Ly and all solution in Ly are

taiyne = £(aopqe/aor) o, n €L

Ifa; > 1 for alli (2k < i < 2k +{), then there is no
solution in Ly.

Example.
z? — 295y% = +5,
t=0 (mod 5),
0<a_;=+v295—-15=217--- < 5= ay,

o' | =—v295 - 15 < =5 = —al),

V295 4+ 15

Bo = —
=16,2,3,2,1,5,...],

V295 4 17

B = T,

ag = 2250 4+ 1311295,
2250% — 295 x 1312 = 5.
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Fig. 2. Next minimal element.

3. Proof of the theorem. We call @ € L;
is minimal if there exists no 5 # 0 in L; such thet
18] < la|, 18| < |&'|- If |ad/| is the smallest, then
of course @ is minimal. Therefore we shall search all
minimal elements @ in L; which are positive (namely
a>0).

Let @ and E be generators of L; such that

O<a<fB, opf <0, |d>]|F]

(cf. Fig. 2). Then &,/ are minimal and the next
minimal element v such that g <~ is

a/

y=a+ [_ﬂ’} B
(cf. [8]). The vectors § and 7 are also generators of
L; and we have
0<p<y, B <0, 81>

Therefore E and 7 satisty the same conditions as &
and 3. From (6), we have

Ly = <O_271a04_6> = <CV_E)7OZ_1> = <a1,a2> = ...,
If we put r; = (—1)‘c, then
r—1 =t—|—\/(§>m:r0 > 0.

From (6), we have

_ Ti-1
il = Tim1 = | = | T
K3

This is just the Euclidian Algorithm. So we have

T_1>rg>1r1 >1r9 > >0,

(8) ﬁi = n;l > 17 k’i = |:Ti_1:| 2 17
T T
9) Qi1 = o1 + k.



Y
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Fig. 3. a—-1 <0,01 <0.

If m > V/d, then there is a possibility that o_;
< 0. We shall examine this case strictly. As kg > 1,
we have

o] =1+ koOéo 2 a_1+ ag.

If oy <0, then a1 < —ap < 0. From 0 < of/ag <
o y/a_i,wehave 0 < o_; /a1 < o} /aq (cf. Fig. 3).
From 0 < af/ap < of/aq and —af) < of < 0 we
have —ap < ;1. From af/ag < of/a; and 0 < o
we have 0 < ag < ag, of/ag > ab/ag. Therefore if
a1 < 0 then we have

a1 < —ap<a; <0<as, a—,1>a—/2.
a;  oas
Similarly if aor_1 < 0 then we have
o1 < —ap <o << agp—1 <0< agg.
Let s; be (—1)*;. Then,
S_1>8)> 81 >8> > Sgp_1 > 0.

Recalling (9), we see

Sit1 = si-1 — kis; < 4.
This is again the Euclidean Algorithm and
Sop—3 = kop_282k—2 + Sap—1 > 28251 = F3 - sop_1.
Using induction we have

m = sg > Fo - Sop_1.
Similarly we have

m=1rg > Fop - rop_1.

As rok_1S25—1 = o104, _; =0 (mod m), we have
mF3, < m?. Therefore if Fyy, > \/m, we have

(10) 0 < agp_q < ag < 01 < -0
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When a_; > 0, we define k = 0. Then (10) is always
valid. From (5) we have integers a; such that

(11) ;o = (=1)a;m.
We shall prove next Lemma.

Lemma. There are integers b; such that

(12) af_jo; = (1) (Vd + b)m.
Proof. When ¢ =0,
of_yo; = a_jag = (—1)H(Vd + t)m.
So by = t. If (12) is valid, then from (9)
i1 = g + ko)
= (aj_ ) + ka0
= (=1)""H(=Vd +bi)m + (=1)'k;a;m
= (=1)'(Vd — b; + kia;)m.

So bi+1 = kiai — bi. D
From (7), (11), (12) we have

8 = 70‘;—1041' _ Vd + b,
A a
From (9) we have
_0‘%1 _ _04271 ki,
ol o
1
ﬁ‘+1 = ﬂz [ﬂl]v
By = _aLl B Vd+t
0 oy om

If ¢ > 2k, then «; > 0. So a; > 0 follows from (11),

1< pg=-"1 <o

follow from (8) and (10). Therefore we have
Vd—b; Vd + b,

<1l< s
a; a;

1< B,

0<

(i > 2k).
From a; > 0, we have

0<b; <Vd, 0<a;<Vd+b <2Vd.

Using pegion-hole principle, we can find ¢,5 (2k <
i < j < 2k + 2d) such that §; = 3;. From (9), we
have

i1

Qg Qg
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If 2k <4, then 0 < a1 < @ < a;41. So we have

ki = {0‘”1} 7
oy

(13) ;1 = 0G4 — |:OéH71:| (67} (Z Z Qk),
Qi _ Qi Q41
bi= o o { o |’
1 1 .
) B=gt|og]. Gz
i+1 i+1

If 2k < ¢, then from (14) we have §,_1 = 8;_1. So
for some ¢ (1 < ¢ < 2d) we have [or, = Pagte. SO
ai+e = a;(2k < i), namely a; are periodic.

Redefine «;_; for ¢ < 2k by (13). Then all pos-
itive minimal elements in L; are o}, i € Z. Similarly
we can prove for all i € Z

a . Vd+b;

a ;o = (=1)'a;m.

fi=-

2 P Bi+e,
Therefore if a; = 1 for some i (2k < i < 2k + ¢),
we have a solution oy, and all solutions in L; are
+i4ne, n € Z. From fB; = (B;1¢, we have
-1 -1
Qignt = "+ 2 — 0
i+l i+1

n
Q2f+¢
= (+> a;, mne.
Qo

If a; > 1 for all ¢ such that 2k < i < 2k + /¢, then
there is no solution in L;. Therefore the theorem is
completely proved.

4. The case m < V/d. Ifm isless than V/d,
then we have 0 < ar_1. Therefore we can take k = 0.
If m =1, then ay = ap = 1, namely we have always
solutions. If m > 1 and (2) has a solution, then
there exists ¢ (0 < ¢ < ¢) such that a; = 1. Then
we have 3; = (Vd +b;)/1, —1 < 8/ < 0. Therefore
bi = [Vd] and B, = By = (V/d +t)/m. This means
that if we start from 8y = v/d + [V/d], then for some
i, a; becomes m (Lagrange, cf. [4, 6, § 27]). If there
does not exist such i, then (2) has no solution. We
need not calculate ¢t. For example

z? —295y% = +3

[Vol. 81(A),

has no solution, because Sy = v/295 + 17 and a; are
1,6,21,11,9,14,5,14,9,11,21,6,1,....

5. Multiple continued fraction method.
We shall propose an improvement of continued frac-
tion metod (cf. [5]). When we want to decompose a
large number d into prime factors, we expand v/d into
continued fraction. Namely from 8y = v/d + [V/d],
we calculate ;. We want to get many a; which are
products of small primes. When some a; is ([ p;)m,
where p; are small primes but m is a product of large
primes, then we start from [y = (v/d +t)/m in par-
allel with ;. There are many such m. From (11),
(12), we have a;_1a; = d — b?. So we can use b;
as t. From the continued fraction expansion of Sy,
we get Bj = (\/& + Ej)/dj. We get many a; which
are products of small primes. So some product of
a;, a;m becomes a square number and we can get a
decomposition of d.
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