No. 7]

Proc. Japan Acad., 81, Ser. A (2005) 131

Dependance of Dirichlet integrals upon lumps of Riemann surfaces
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Abstract:

Take a simple arc v in an open Riemann suface R carrying a nonconstant

harmonic function v with finite Dirichlet integral D(u; R). Form a Riemann surface R, with lump
C \ v by pasting R\ vy with CAI\’y crosswise along 7, i.e. Ry := (R\ )W, ((A}\’y), and the transplant
u~ of uwon R to R, characterized by its being harmonic on R, with D(u,; Ry) < 400 and u, = u at
the ideal boundary of R, and hence of R in a suitable sense. We are interested in the comparison of
D(u; Ry) with D(u; R) when we take a variety of choices of pasting arcs v in R, and we will prove
that D(u,; Ry) < D(u; R) for any u level arc v in R, D(uy; Ry) > D(u; R) for any u conjugate
level arc 7y in R, and as a consequence of these two facts there is a nondegenerate arc v (i.e. not a

point arc ) in R such that D(u,; R,) = D(u; R).
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Take a simple arc v in a Riemann surface R.
Since v is simple we can embed vy conformally in
the complex plane C so that we can view R and C
have the arc v in common. We form a new Riemann
surface R, by pasting R\~ with 6\7 crosswise along
~, where C = C U {oo} is the complex sphere with
oo the point at infinity of C. We have been using
the following impressive notation for R.:

Ry = (R\ "), (C\ 7).

The surface R, will be referred to as a Riemann sur-
face with a lump C \ v obtained from R by hitting
R at ~.

The Dirichlet integral D(f; R) of a real valued
function f in VV&)CQ (R), the local Sobolev space on R,
over R is the quantity given by

D(f;R) ::/Rdf/\*df.

We denote by LY2(R) the Dirichlet space (cf. [3])
which is the class of functions f € Wﬁ)cz (R) with
finite Dirichlet integrals D(f; R) < 400 over R. For
two functions f and g in L1'?(R) we can consider the

quantity
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D(f.giR) = [ df Asdg

This is a convenient tool for the computation of
Dirichlet integrals and is referred to as the mutual
Dirichlet integral of f and g over R.

It is traditional in the classification theory of
Riemann surfaces (cf. e.g. [5]) to use the notation
HD(R) for the class of harmonic functions v on R
with finite Dirichlet integrals D(u; R) taken over R
and Opgp the class of Riemann surfaces R such that
HD(R) is trivial, i.e. HD(R) = R (the set of real
numbers). It is known that Og < Ogp (strict in-
clusion), where Og is the class of parabolic (i.e. not
hyperbolic) Riemann surfaces characterized by the
nonexistence of Green functions on them. Hence, as
far as we require for a Riemann surface R to have
a nontrivial harmonic function with finite Dirichlet
integral we must assume first of all that R is hyper-
bolic. For such surfaces R, we set

D(R) := L**(R)NC(R), Do(R) := L**(R)NCy(R),

where Cy(R) is the class of f € C(R) with compact
supports in R, and finally we denote by

Da(R)

the class of f € D(R) such that there exists a se-
quence (fp)n>1 in Dy(R) converging to f almost uni-
formly on R (i.e. uniformly on each compact subset
of R) and at the same time D(f — f,,; R) — 0 (n —
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00). Clearly Do(R) C Da(R) C D(R) and HD(R) C
D(R). The function f € Da(R) is referred to as a
Dirichlet potential on R since f € Da(R) is charac-
terized as a function f € D(R) such that there exists
a potential (a positive superharmonic function with
the vanishing greatest harmonic minorant on R) py
on R with |f| < py on R (cf. e.g. [2]). Therefore
we may impressively say that a function f in Da(R)
vanishes at the ideal boundary of R and similarly,
for two functions f and g in D(R), f equals g at the
ideal boundary of R if f — g € Da(R).

Fix a compact subset K of R with connected
complement R\ K. We say that a subregion Q of R
whose relative boundary 02 of € consists of a finite
number of mutually disjoint piecewise smooth Jor-
dan curves is a smooth ideal boundary neighborhood
of R excluding K if R\ € is compact and K C R\
Q. Suppose we have two functions f € Da(R \ K)
and g € D(R\ K). Then we have the following con-
sequence (cf. [5]) of the Green formula if moreover
the second function g is supposed to be smooth in a
vicinity of 9Q:

(1) /Qdf/\*dg+/ﬂfd*dg:/mf*dg.

Here formally in general we have to add something
like the term [; f * dg on the right hand side of the
above identity (1) to obtain the complete Green for-
mula, where ¢ is the ideal boundary of Q (so that of
R) but, since f = 0 on §, we can disregard this term.
This is the intuitive explanation of the significance
of (1).

We have the following direct sum decomposition
of D(R) (cf. e.g. [2] and [5]), which is referred to as
the Royden decomposition of D(R):

(2)1 D(R) = HD(R) + Da(R)

with HD(R) N Da(R) = {0} in the sense that every
f € D(R) can be uniquely expressed as f = u +
g with w € HD(R) and g € Da(R) satisfying the
Dirichlet principle:

(2)2 D(f; R) = D(w; R) + D(g; R).

The function u in the Royden decomposition f = u+
g is referred to as the harmonic part of the Royden
decomposition of f.

Now we assume that there is nontrivial har-
monic function u on R with finite Dirichlet integral
D(u; R). For a simple arc v C R form the Riemann
surface R, with lump C \ v by hitting R at . It
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is easy to find an f € D(R,) such that f = u on a
smooth ideal boundary neighborhood 2 excluding ~
so that Q C R\ v C R, and R, \ Q contains the clo-
sure of C\ vy in R,. Let u., be the harmonic part of f
which is determined only by u and v not depending
on the particular choice of f. We say that u, is the
transplant of w on R to R,. Observe that v in R,
gives rise to a Jordan curve o in R, such that the
relative boundary (R y) considered in R, is a and
the relative boundary d(C \ v) also considered in R,
is —a. If v C R is piecewise smooth, then so is «
and (1) takes the form

(3) D(u,yfu,u;R\'y):/(ufy—u)*du.
[e%

As before we consider R carring a u € HD(R) \
R. A simple arc v in R is said to be a u level arc if
du A *du # 0 on v and du = 0 along ~y, or equiva-
lently, u is a constant on «y. Similarly we say that a
simple arc v in R is a u conjugate level arc if du A
xdu # 0 on v and *du = 0 along v so that any
branch of the conjugate harmonic function of u is a
constant on . We will state and prove the following
three theorems. In all of these three theorems we as-
sume that R is a hyperbolic Riemann surface, u is a
nonconstant harmonic function on R with the finite
Dirichlet integral D(u; R) < 400 over R, and we de-
note by w., for any simple arc v on R the transplant
ofuon Rto Ry =(R\"7)W, (C\ 7), the Riemann
surface with lump obtained from R by hitting R
at 7.

Theorem 1. For any u level arc v in R the
following strict inequality holds:

(4) D(uy; Ry) < D(w; R).

Proof. Observing that © = A (a constant) on 7,
define the new function v on R, given by v = u on
R\~v,v=2Aon (A?\’y, and v = A on 7. Note that u.,
is the harmonic part of v on R, and clearly u, # v
on R,. Therefore by the Dirichlet principle (2),

D(uy; Ry) < D(v; R,) = D(v; R) = D(u; R),

which is nothing but (4). []

Theorem 2. For any u conjugate level arc ~y

in R the following strict inequality holds:
(5) D(uy; Ry) > D(u; R).

Proof. By (3) and *du = 0 along - and hence
along «, we see that
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D(u,yfu,u;R\fy):/(u.yfu)*du:().

[

By the above and the Schwarz inequality
D(u; R\ ) = D(uy, u; R\ 7)
< D(uy; R\ )'/2D(u; R\ 7)'/?

and we deduce D(u; R\ 7)"/? < D(u,; R\ v)Y/? and
a fortiori

D(u; R) = D(u; R\ ) < D(uq; R\ ) < D(uq; R,)

since D (u.; C\ ) > 0 and thus we can conclude the
validity of (5). L

Fix a nonsingular point of u (i.e. a point at which
du A *du does not vanish) and a closed parametric
disc V: |z] <1 centered at the above point such that
du A xdu # 0 on V. We denote by p(¢) the radius of
V terminating at ¢ € V. Let v((1) (7(¢2), resp.) be
the u level arc (u conjugate level arc, resp.) starting
from the origin 0, passing through the interior of V,
and terminating at {; € 9V ({; € IV, resp.) for
the first time, and (1) Ny(¢2) = {0}. We can have
such a situation as described above by taking V' small
enough if necessary and we may assume the subarc of
the circle 9V bounded by (; and (5 is Q/Eg ={Ce
OV: arg(y < arg( < arg(o}, where 0 < arg(y <
arg (3 < 27, and we denote by A := @ \{¢1, ¢} so
that A = (1.

Theorem 3. While there exist two points (1
and (3 on A such that for any arcs y1 and o con-
necting the origin 0 and (1 and (s respectively con-
tained in the interior of V except for their terminal
points

(6) D(uy,; Ryy) < D(w; R) < D(uyy; Ry, ),

there is the third point (3 in A such that for any
simple arc v3 connecting 0 and (3 contained in the
interior of V' except for its terminal point

(7) D(tyy; Ryy) = D(u; R).

Proof. First of all observe that any simple arc
in V connecting 0 and ¢ € 9V and contained in the
interior of V' except for its end point ¢ is homotopic
to p = p(¢) in V with a homotopy bridge contained
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in the interior of V' except for terminal points { and
of course in R and the same is true of v and p in
C if we embed V naturally to C. Hence R, = R,
and thus u, = u,. Therefore (6) is certainly correct
in view of Theorems 1 and 2 and the proof of (7)
will be over if it is shown for the particular case of
v = p(¢3). Consider the function

d(¢) :== D(upc); Rpey) (€ € A4)

on A, which is easily seen to be continuous on A
(cf. [4]) by the standard normal family argument (cf.
e.g. [1, 6], etc.). Since d(¢1) < D(u; R) < d((2), the
intermediate value theorem for continuous functions
implies the existence of a (3 € A such that d((3) =
D(u; R). [

By using Theorem 2 above we can complete the
proof of the existence of supercritical pasting arcs in-
troduced in [4], where the existence was only estab-
lished in [4] under an additional technical condition
so that we can now remove this unpleasant assump-
tion thanks to our present simple Theorem 2.

At the last but not the least we appreciate Pro-
fessors Junichiro Narita first of all and then Shigeo
Segawa for their important suggestions which gave
us an incentive to complete the present work.
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