Secondary Whittaker functions for \boldsymbol{P}_{J}-principal series representations of $S p(3, \mathrm{R})$

By Miki Hirano*) and Takayuki OdA**)
(Communicated by Shigefumi Mori, M. J. A., June 14, 2005)

Abstract

In this paper, we give explicit formulas for the secondary Whittaker functions for P_{J}-principal series representations of $\operatorname{Sp}(3, \mathbf{R})$, which are power series solutions of a holonomic system of rank 24.

Key words: Whittaker functions; Whittaker models.

1. Introduction. We discuss in this paper the secondary Whittaker functions for a generalized principal series representation of $S p(3, \mathbf{R})$. Here the secondary functions mean the power series solutions at the regular singularity of the holonomic system coming from the realization of the representation, which is originated in Harish-Chandra's study [2] on the matrix coefficients. In view of automorphic forms, it is known that these are fundamental in constructing the Poincaré series (cf. [9, 10]). Moreover, the functions obtained in this paper give concrete examples of confluent hypergeometric series of three variables, which are not simple Γ-series. It is also interesting to compare this result with the other ones (cf. [3, 5, 13]).

2. Preliminaries.

2.1. Groups and algebras. Let $M_{n}(\mathbf{R})$ be the space of real matrices of size n and 1_{n} (resp. O_{n}) be the unit (resp. the zero) matrix in $M_{n}(\mathbf{R})$. The real symplectic group $G=S p(3, \mathbf{R})$ of degree three is defined by

$$
\begin{aligned}
G & =S p(3, \mathbf{R}) \\
& =\left\{g \in M_{6}(\mathbf{R}) \mid{ }^{t} g J_{3}=J_{3} g^{-1}, \operatorname{det} g=1\right\}
\end{aligned}
$$

with $J_{3}=\left(\begin{array}{cc}O_{3} & 1_{3} \\ -1_{3} & O_{3}\end{array}\right)$, which is connected, semisimple, and split over \mathbf{R}. Let $\theta(g)={ }^{t} g^{-1}$, $g \in G$, be a Cartan involution of G. Then $K=$ $\{g \in G \mid \theta(g)=g\}$ is a maximal compact subgroup of G which is isomorphic to the unitary group $U(3)$ of degree three.

[^0]Let $\mathfrak{g}=\mathfrak{s p}(3, \mathbf{R})$ be the Lie algebra of G and $\mathfrak{k}($ resp. $\mathfrak{p})$ be the +1 (resp. -1) eigenspace of the differential of θ in \mathfrak{g}. Then \mathfrak{k} is the Lie algebra of K which is isomorphic to the unitary algebra $\mathfrak{u}(3)$ of degree three and \mathfrak{g} has a Cartan decomposition $\mathfrak{g}=$ $\mathfrak{k} \oplus \mathfrak{p}$. Now we fix an isomorphism κ between $\mathfrak{u}(3)$ and \mathfrak{k} given by

$$
\begin{aligned}
\kappa: \mathfrak{u}(3) & \ni X \\
& \mapsto \frac{1}{2}\left(\begin{array}{cc}
X+\bar{X} & \sqrt{-1}(\bar{X}-X) \\
\sqrt{-1}(X-\bar{X}) & X+\bar{X}
\end{array}\right) \in \mathfrak{k} .
\end{aligned}
$$

For a Lie algebra \mathfrak{l}, we denote by $\mathfrak{l}_{\mathbf{C}}=\mathfrak{l} \otimes_{\mathbf{R}} \mathbf{C}$ the complexification of \mathfrak{l}. Take a compact Cartan subalgebra \mathfrak{h} of \mathfrak{g} defined by $\mathfrak{h}=\bigoplus_{i=1}^{3} \mathbf{R} T_{i}$ with $T_{i}=\kappa\left(\sqrt{-1} E_{i i}\right) \in \mathfrak{k}$, where $E_{i j}$ is the matrix unit in $M_{3}(\mathbf{R})$ with (i, j) entry. For each $1 \leq i \leq 3$, define a linear form β_{i} on $\mathfrak{h}_{\mathbf{C}}$ by $\beta_{i}\left(T_{j}\right)=\sqrt{-1} \delta_{i j}, 1 \leq j \leq 3$. Here $\delta_{i j}$ is the Kronecker's delta. Then the set Δ of roots of $\left(\mathfrak{h}_{\mathbf{C}}, \mathfrak{g}_{\mathbf{C}}\right)$ is given by $\Delta=\Delta\left(\mathfrak{h}_{\mathbf{C}}, \mathfrak{g}_{\mathbf{C}}\right)=$ $\left\{ \pm 2 \beta_{i}, \pm \beta_{j} \pm \beta_{k}(j<k)\right\}$ and the subset $\Delta^{+}=$ $\left\{2 \beta_{i}, \beta_{j} \pm \beta_{k}(j<k)\right\}$ forms a positive root system. Let $\Delta_{c}^{+}=\left\{\beta_{i}-\beta_{j}(i<j)\right\}$ and $\Delta_{n}^{+}=\left\{2 \beta_{i}, \beta_{j}+\right.$ $\left.\beta_{k}(j<k)\right\}$ be the set of compact and non-compact positive roots, respectively. If we denote the root space for $\beta \in \Delta$ by \mathfrak{g}_{β}, then $\mathfrak{k}_{\mathbf{C}} \simeq \mathfrak{g l}(3, \mathbf{C})$ and $\mathfrak{p}_{\mathbf{C}}$ have the decompositions

$$
\begin{gathered}
\mathfrak{k}_{\mathbf{C}}=\mathfrak{h}_{\mathbf{C}} \oplus\left(\bigoplus_{\beta \in \Delta_{c}^{+}} \mathfrak{g}_{ \pm \beta}\right) \\
\mathfrak{p}_{\mathbf{C}}=\mathfrak{p}_{+} \oplus \mathfrak{p}_{-}, \quad \mathfrak{p}_{ \pm}=\bigoplus_{\beta \in \Delta_{n}^{+}} \mathfrak{g}_{ \pm \beta} .
\end{gathered}
$$

Now we take a basis of $\mathfrak{k}_{\mathbf{C}}$ and $\mathfrak{p}_{ \pm}$consisting of root vectors. Let us denote the extension of the isomorphism κ to their complexifications again by κ. Then we have $\kappa\left(E_{i j}\right) \in \mathfrak{g}_{\beta_{i}-\beta_{j}}$ for $i \neq j$ and thus the set $\left\{\kappa\left(E_{i j}\right) \mid 1 \leq i, j \leq 3\right\}$ forms a basis of $\mathfrak{k}_{\mathbf{C}}$. Define a
map

$$
\begin{aligned}
p_{ \pm} & :\left\{X \in M_{3}(\mathbf{C}) \mid X={ }^{t} X\right\} \ni X \\
& \mapsto\left(\begin{array}{cc}
X & \pm \sqrt{-1} X \\
\pm \sqrt{-1} X & -X
\end{array}\right) \in \mathfrak{p}_{ \pm} .
\end{aligned}
$$

Then the element $X_{ \pm i j}=p_{ \pm}\left(\frac{1}{2}\left(E_{i j}+E_{j i}\right)\right)$ is a root vector in $\mathfrak{g}_{ \pm\left(\beta_{i}+\beta_{j}\right)}$ for $i \leq j$ and the set $\left\{X_{ \pm i j} \mid 1 \leq\right.$ $i \leq j \leq 3\}$ gives a basis of $\mathfrak{p}_{ \pm}$.

Take a maximal abelian subalgebra $\mathfrak{a}_{\mathfrak{p}}=$ $\bigoplus_{i=1}^{3} \mathbf{R} H_{i}$ of \mathfrak{p} with $H_{1}=\operatorname{diag}(1,0,0,-1,0,0)$, $H_{2}=\operatorname{diag}(0,1,0,0,-1,0)$, and $H_{3}=$ $\operatorname{diag}(0,0,1,0,0,-1)$, and define $e_{i} \in \mathfrak{a}_{\mathfrak{p}}^{*}$ for each $1 \leq i \leq 3$ by $e_{i}\left(H_{j}\right)=\delta_{i j}$ for $1 \leq j \leq 3$. Then the set Σ of the restricted roots of $\left(\mathfrak{a}_{\mathfrak{p}}, \mathfrak{g}\right)$ is given by $\Sigma=\Sigma\left(\mathfrak{a}_{\mathfrak{p}}, \mathfrak{g}\right)=\left\{ \pm 2 e_{i}, \pm e_{j} \pm e_{k}(j<k)\right\}$ and the subset $\Sigma^{+}=\left\{2 e_{i}, e_{j} \pm e_{k}(j<k)\right\}$ forms a positive root system. For each $\alpha \in \Sigma$, we denote the restricted root space by \mathfrak{g}_{α} and choose a restricted root vector E_{α} in \mathfrak{g}_{α}. If we put $\mathfrak{n}_{\mathfrak{p}}=\bigoplus_{\alpha \in \Sigma^{+}} \mathfrak{g}_{\alpha}$, then \mathfrak{g} has an Iwasawa decomposition $\mathfrak{g}=\mathfrak{n}_{\mathfrak{p}} \oplus \mathfrak{a}_{\mathfrak{p}} \oplus \mathfrak{k}$. Also we have $G=N A K$, where $A($ resp. $N)$ is the analytic subgroup with Lie algebra $\mathfrak{a}_{\mathfrak{p}}$ (resp. $\mathfrak{n}_{\mathfrak{p}}$).

Set

$$
\begin{gathered}
\mathfrak{a}_{J}=\bigoplus_{i=1}^{2} \mathbf{R} H_{i}, \quad \mathfrak{n}_{J}=\bigoplus_{\alpha \in \Sigma+\backslash\left\{2 e_{3}\right\}} \mathfrak{g}_{\alpha} \\
\mathfrak{m}_{J}=\mathbf{R} H_{3} \oplus \mathfrak{g}_{2 e_{3}} \oplus \mathfrak{g}_{-2 e_{3}}
\end{gathered}
$$

Moreover let $A_{J}, N_{J}, M_{J, 0}$ be the analytic subroups with Lie algebras $\mathfrak{a}_{J}, \mathfrak{n}_{J}, \mathfrak{m}_{J}$, respectively. Then $P_{J}=M_{J} A_{J} N_{J}$ with $M_{J}=Z_{K}\left(\mathfrak{a}_{J}\right) M_{J, 0}$ is a parabolic subgroup of G corresponding to the root $2 e_{3}$ and the right-hand side gives its Langlands decomposition. Here $Z_{K}\left(\mathfrak{a}_{J}\right)=\left\{1_{6}, \mu_{1}\right\} \times\left\{1_{6}, \mu_{2}\right\}$ with $\mu_{i}=\exp \pi T_{i}$ is the centralizer of \mathfrak{a}_{J} in K. We call P_{J} the second Jacobi parabolic subgroup of G.
2.2. Representations. Here we introduce some notations for representations of K, G, and N which we need in this paper.

The equivalence classes of irreducible representations of $K \simeq U(3)$ can be parameterized by the set $\Lambda=\left\{\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \mid \lambda_{i} \in \mathbf{Z}, \lambda_{1} \geq \lambda_{2} \geq \lambda_{3}\right\}$. If we denote the representation of K associated to $\lambda \in \Lambda$ by $\left(\tau_{\lambda}, V_{\lambda}\right)$, the representation space V_{λ} has the Gelfand-Zelevinsky basis $\{f(M)\}_{M \in G(\lambda)}$ parameterized by the set $G(\lambda)$ of all G-patterns of type λ (cf. [1, 4]). Here a G-pattern $M \in G(\lambda)$ of type $\lambda=$ $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \Lambda$ is a triangular array

$$
M=\left(\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
\lambda_{3} \\
\alpha_{1} & \alpha_{2} \\
\beta
\end{array}\right)
$$

of integers satisfying the conditions $\lambda_{1} \geq \alpha_{1} \geq \lambda_{2} \geq$ $\alpha_{2} \geq \lambda_{3}$ and $\alpha_{1} \geq \beta \geq \alpha_{2}$. When $\lambda=(m, m, m) \in$ Λ, the associated representation $\left(\tau_{\lambda}, V_{\lambda}\right)$ is one dimensional and

$$
\begin{gathered}
\tau_{\lambda}\left(\kappa\left(E_{i i}\right)\right) v=m v, \quad(1 \leq i \leq 3) \\
\tau_{\lambda}\left(\kappa\left(E_{i j}\right)\right) v=0, \quad(i \neq j), \quad v \in V_{\lambda}
\end{gathered}
$$

Moreover, it is known that both of $\mathfrak{p}_{ \pm}$become K modules via the adjoint action of K, and we have isomorphisms $\mathfrak{p}_{+} \simeq V_{(2,0,0)}$ and $\mathfrak{p}_{-} \simeq V_{(0,0,-2)}$.

Let $\sigma=\left(\varepsilon_{1}, \varepsilon_{2}, D\right)$ be a representation of M_{J} with characters $\varepsilon_{i}:\left\{1_{6}, \mu_{i}\right\} \rightarrow \mathbf{C}^{\times}$and a (limit of) discrete series representation $D=\mathcal{D}_{k}^{ \pm}$of $M_{J, 0} \simeq$ $S L(2, \mathbf{R})$ with the Blattner parameter $\pm k\left(k \in \mathbf{Z}_{\geq 1}\right)$, and take a quasi-character ν of A_{J}. Then we can construct an induced representation $\operatorname{Ind}_{P_{J}}^{G}(\sigma \otimes \nu \otimes$ $1_{N_{J}}$) of G from the second Jacobi parabolic subgroup P_{J} in the usual manner, which we call a P_{J}-principal series representation of G. The multiplicity theorem for the K-types can be computed by the Frobenius reciprocity for induced representations.

Proposition 2.1. Put $\operatorname{sgn}(D)=1$ (resp. - 1) for $D=\mathcal{D}_{k}^{+}\left(\right.$resp. $\left.\mathcal{D}_{k}^{-}\right)$. Then each irreducible $K-$ module $\left(\tau_{\lambda}, V_{\lambda}\right)$ with $\lambda \in \Lambda$ occurs in the restriction of $\operatorname{Ind}_{P_{J}}^{G}\left(\sigma \otimes \nu \otimes 1_{N_{J}}\right)$ to K with the following multiplicity m_{λ}.

$$
m_{\lambda}=\#\left\{\begin{array}{l|l}
M \in G(\lambda) & \begin{array}{c}
\varepsilon_{i}\left(\mu_{i}\right)=(-1)^{w_{i}}, \quad i=1,2 \\
k \equiv w_{3}(\bmod 2) \\
k \leq \operatorname{sgn}(D) w_{3}
\end{array}
\end{array}\right\}
$$

Here $w=\left(w_{1}, w_{2}, w_{3}\right)$ is the weight for $M \in G(\lambda)$ defined by the formula
$w_{1}=\beta, \quad w_{2}=\alpha_{1}+\alpha_{2}-\beta, \quad w_{3}=\lambda_{1}+\lambda_{2}+\lambda_{3}-\alpha_{1}-\alpha_{2}$.
For $\pi=\operatorname{Ind}_{P_{J}}^{G}\left(\sigma \otimes \nu \otimes 1_{N_{J}}\right)$ with $\sigma=\left(\varepsilon_{1}, \varepsilon_{2}, \mathcal{D}_{k}^{+}\right)$ such that $\varepsilon_{i}\left(\mu_{i}\right)=(-1)^{k}$, one can see from the above formula that $m_{(k, k, k)}=1$ and $m_{(k-2, k-2, k-2)}=0$. The K-type $\tau_{(k, k, k)}$ of π is called corner.

Let η be a unitary character of N and denote the derivative of η by the same letter. Since $\mathfrak{n}_{\mathfrak{p}}^{\text {ab }}=$ $\mathfrak{n}_{\mathfrak{p}} /\left[\mathfrak{n}_{\mathfrak{p}}, \mathfrak{n}_{\mathfrak{p}}\right] \simeq \mathfrak{g}_{e_{1}-e_{2}} \oplus \mathfrak{g}_{e_{2}-e_{3}} \oplus \mathfrak{g}_{2 e_{3}}, \eta$ is specified by three real numbers c_{12}, c_{23}, and c_{3} such that

$$
\begin{gathered}
\eta\left(E_{e_{1}-e_{2}}\right)=2 \pi \sqrt{-1} c_{12}, \quad \eta\left(E_{e_{2}-e_{3}}\right)=2 \pi \sqrt{-1} c_{23}, \\
\eta\left(E_{2 e_{3}}\right)=2 \pi \sqrt{-1} c_{3} .
\end{gathered}
$$

When $c_{12} c_{23} c_{3} \neq 0$, a unitary character η of N is called non-degenerate.
3. Whittaker functions. For a finite dimensional representation $\left(\tau, V_{\tau}\right)$ of K and a nondegenerate unitary character η of N, we consider the space $C_{\eta, \tau}^{\infty}(N \backslash G / K)$ of smooth functions $\varphi: G \rightarrow V_{\tau}$ with the property

$$
\varphi(n g k)=\eta(n) \tau(k)^{-1} \varphi(g), \quad(n, g, k) \in N \times G \times K
$$

Here we remark that any function $f \in C_{\eta, \tau}^{\infty}(N \backslash G / K)$ is determined by its restriction $\left.f\right|_{A}$ to A from the Iwasawa decomposition $G=N A K$ of G. Let $\left(\tau^{*}, V_{\tau^{*}}\right)$ be the contragradient representation of $\left(\tau, V_{\tau}\right)$ and $C^{\infty} \operatorname{Ind}_{N}^{G}(\eta)$ be the C^{∞}-induced representation from η. Then the space $C_{\eta, \tau}^{\infty}(N \backslash G / K)$ is isomorphic to $\operatorname{Hom}_{K}\left(\tau^{*}, C^{\infty} \operatorname{Ind}_{N}^{G}(\eta)\right)$ via the correspondence between $\iota \in \operatorname{Hom}_{K}\left(\tau^{*}, C^{\infty} \operatorname{Ind}_{N}^{G}(\eta)\right)$ and $F^{[\iota]} \in C_{\eta, \tau}^{\infty}(N \backslash G / K)$ given by the relation $\iota\left(v^{*}\right)(g)=$ $\left\langle v^{*}, F^{[\iota]}(g)\right\rangle$ for $v^{*} \in V_{\tau^{*}}$ and $g \in G$ with the canonical bilinear form $\langle\cdot, \cdot\rangle$ on $V_{\tau^{*}} \times V_{\tau}$.

Let $\left(\pi, H_{\pi}\right)$ be an irreducible admissible representation of G, and take a multiplicity one K type $\left(\tau^{*}, V_{\tau^{*}}\right)$ of π with an injection $i: \tau^{*} \rightarrow \pi$. Then, for each element T in the intertwining space $\mathcal{I}_{\eta, \pi}=\operatorname{Hom}_{\left(\mathfrak{g}_{\mathbf{C}}, K\right)}\left(\pi, C^{\infty} \operatorname{Ind}_{N}^{G}(\eta)\right)$ between $\left(\mathfrak{g}_{\mathbf{C}}, K\right)$ modules consisting of all K-finite vectors, the relation $T\left(i\left(v^{*}\right)\right)(g)=\left\langle v^{*}, T_{i}(g)\right\rangle$ for $v^{*} \in V_{\tau^{*}}$ and $g \in G$ determines an element $T_{i} \in C_{\eta, \tau}^{\infty}(N \backslash G / K)$. Now we put

$$
\begin{aligned}
& \operatorname{Wh}(\pi, \eta, \tau) \\
& \quad=\bigcup_{i \in \operatorname{Hom}_{K}\left(\tau^{*}, \pi\right)}\left\{T_{i} \in C_{\eta, \tau}^{\infty}(N \backslash G / K) \mid T \in \mathcal{I}_{\eta, \pi}\right\},
\end{aligned}
$$

and call $\mathrm{Wh}(\pi, \eta, \tau)$ the space of Whittaker functions for (π, η, τ).
4. Differential equations. Let $\pi=$ $\operatorname{Ind}_{P_{J}}^{G}\left(\sigma \otimes \nu \otimes 1_{N_{J}}\right)$ be an irreducible $P_{J^{-}}$ principal series representation of G with $\sigma=$ $\left(\varepsilon_{1}, \varepsilon_{2}, \mathcal{D}_{k}^{+}\right)$and ν such that $\varepsilon_{i}\left(\mu_{i}\right)=(-1)^{k}$ and $\nu\left(\operatorname{diag}\left(a_{1}, a_{2}, 1, a_{1}^{-1}, a_{2}^{-1}, 1\right)\right)=a_{1}^{\nu_{1}} a_{2}^{\nu_{2}}$, and let τ^{*} be the corner K-type of π, that is, $\tau=\tau_{(-k,-k,-k)}$. Moreover, let η be a non-degenerate unitary character of N specified by three real numbers c_{12}, c_{23} and c_{3}. In the rest of this paper, we discuss the space $\mathrm{Wh}(\pi, \eta, \tau)$ of Whittaker functions for the above (π, η, τ).

Definition 4.1. The \pm-chirality matrices $m_{i}\left(C_{ \pm}\right)$for $1 \leq i \leq 3$ are defined by

$$
\begin{gathered}
m_{1}\left(C_{ \pm}\right)=\left[\begin{array}{ccc}
X_{ \pm 11} & X_{ \pm 12} & X_{ \pm 13} \\
X_{ \pm 12} & X_{ \pm 22} & X_{ \pm 23} \\
X_{ \pm 13} & X_{ \pm 23} & X_{ \pm 33}
\end{array}\right] \\
m_{2}\left(C_{ \pm}\right)=\left[\begin{array}{ccc}
M_{ \pm 11} & -M_{ \pm 12} & M_{ \pm 13} \\
-M_{ \pm 12} & M_{ \pm 22} & -M_{ \pm 23} \\
M_{ \pm 13} & -M_{ \pm 23} & M_{ \pm 33}
\end{array}\right],
\end{gathered}
$$

and $m_{3}\left(C_{ \pm}\right)=\operatorname{det}\left(m_{1}\left(C_{ \pm}\right)\right)$. Here $M_{ \pm i j}$ is the $(i, j)-$ minor of the matrix $m_{1}\left(C_{ \pm}\right)$for each $1 \leq i \leq j \leq$ 3.

Put $C_{2 i}=\operatorname{Tr}\left(m_{i}\left(C_{+}\right) m_{i}\left(C_{-}\right)\right)$for $1 \leq i \leq 3$. Then one can see that $C_{2 i} \in U\left(\mathfrak{g}_{\mathbf{C}}\right)^{K}=\{X \in$ $\left.U\left(\mathfrak{g}_{\mathbf{C}}\right) \mid \operatorname{Ad}(k) X=X, k \in K\right\}$.

Remark 4.2. In the case of $S p(n, \mathbf{R})$, we can define $C_{2 i}$ for $1 \leq i \leq n$ belonging to $U\left(\mathfrak{g}_{\mathbf{C}}\right)^{K}$ similarly. The operator $C_{2 n}$ is essentially the same as the so-called Maass shift operator in the classical literature [7].

The explicit actions of the operators $C_{2 i}$ on $C_{\eta, \tau}^{\infty}(N \backslash G / K)$ can be computed by expressing them in the normal order modulo $\left[\mathfrak{n}_{\mathfrak{p}}, \mathfrak{n}_{\mathfrak{p}}\right.$] with respect to the Iwasawa decomposition of \mathfrak{g}, according to the following fundamental lemma.

Lemma 4.3. Let $f \in C_{\eta, \tau}^{\infty}(N \backslash G / K)$. For $X \in U\left(\mathfrak{k}_{\mathbf{C}}\right), Y \in U\left(\mathfrak{n}_{\mathfrak{p} \mathbf{C}}\right), Z \in U\left(\mathfrak{a}_{\mathfrak{p} \mathbf{C}}\right)$ and $a \in A$, we have $\left(\operatorname{Ad}\left(a^{-1}\right) Y\right) Z X f(a)=\eta(Y) \tau(-X)(Z f)(a)$. In particular, for $a=\operatorname{diag}\left(a_{1}, a_{2}, a_{3}, a_{1}^{-1}, a_{2}^{-1}, a_{3}^{-1}\right) \in$ A, we have $H_{i} f(a)=a_{i} \frac{\partial}{\partial a_{i}} f(a)$ and

$$
\begin{aligned}
E_{e_{1}-e_{2}} f(a) & =2 \pi \sqrt{-1} c_{12} \frac{a_{1}}{a_{2}} f(a), \\
E_{e_{2}-e_{3}} f(a) & =2 \pi \sqrt{-1} c_{23} \frac{a_{2}}{a_{3}} f(a), \\
E_{2 e_{3}} f(a) & =2 \pi \sqrt{-1} c_{3} a_{3}^{2} f(a),
\end{aligned}
$$

and $E_{\alpha} f(a)=0$ for $\forall \alpha \in \Sigma^{+} \backslash\left\{e_{1}-e_{2}, e_{2}-e_{3}, 2 e_{3}\right\}$.
Now we consider a holonomic system of partial differential equations which is satisfied by the A-radial part of each element in $\mathrm{Wh}(\pi, \eta, \tau)$. For our convenience, we use a coordinate $x=\left(x_{1}, x_{2}, x_{3}\right)$ on A with $x_{1}=\left(\pi c_{12} \frac{a_{1}}{a_{2}}\right)^{2}, x_{2}=\left(\pi c_{23} \frac{a_{2}}{a_{3}}\right)^{2}$ and $x_{3}=$ $4 \pi c_{3} a_{3}^{2}$ for $\operatorname{diag}\left(a_{1}, a_{2}, a_{3}, a_{1}^{-1}, a_{2}^{-1}, a_{3}^{-1}\right) \in A$.

Theorem 4.4. Each element φ in the space $\left.\mathrm{Wh}(\pi, \eta, \tau)\right|_{A}$ of the restriction of Whittaker functions to A satisfies the following holonomic system of partial differential equations of rank 24:

$$
\left\{\begin{array}{l}
\mathcal{D}_{2} \varphi(x)=0 \tag{1}\\
\mathcal{D}_{3} \varphi(x)=0 \\
\mathcal{D}_{4} \varphi(x)=0
\end{array}\right.
$$

Here

$$
\begin{aligned}
& \mathcal{D}_{2}=(\left.2 \partial_{1}+k-6\right)\left(2 \partial_{1}-k\right) \\
&+\left(-2 \partial_{1}+2 \partial_{2}+k-4\right)\left(-2 \partial_{1}+2 \partial_{2}-k\right) \\
&+\left(-2 \partial_{2}+2 \partial_{3}-x_{3}+k-2\right) \\
& \cdot\left(-2 \partial_{2}+2 \partial_{3}+x_{3}-k\right) \\
&- 8 x_{1}-8 x_{2}-\chi_{2, k, \nu}, \\
& \mathcal{D}_{3}=\left(2 \partial_{1}-k-2\right) \\
& \cdot\left\{\left(-2 \partial_{1}+2 \partial_{2}-k-1\right)\right. \\
&\left.\cdot\left(-2 \partial_{2}+2 \partial_{3}+x_{3}-k\right)+4 x_{2}\right\} \\
&+ 4 x_{1}\left(-2 \partial_{2}+2 \partial_{3}+x_{3}-k\right), \\
& \mathcal{D}_{4}=\left\{\left(-2 \partial_{1}+2 \partial_{2}+k-3\right)\right. \\
&\left.\cdot\left(-2 \partial_{2}+2 \partial_{3}-x_{3}+k-2\right)+4 x_{2}\right\} \\
& \cdot\left\{\left(-2 \partial_{1}+2 \partial_{2}-k-1\right)\right. \\
&+\left.\left(2 \partial_{1}+k-5\right)\left(-2 \partial_{2}+2 \partial_{3}+x_{3}-k\right)+4 x_{3}\right\} \\
& \cdot\left(2 \partial_{1}-k-1\right)\left(-2 \partial_{2}+2 \partial_{3}+x_{3}-k\right) \\
&+\left\{\left(2 \partial_{1}+k-5\right)\right. \\
&\left.\cdot\left(-2 \partial_{1}+2 \partial_{2}+k-4\right)+4 x_{1}\right\} \\
& \cdot\left\{\left(2 \partial_{1}-k-1\right)\left(-2 \partial_{1}+2 \partial_{2}-k\right)+4 x_{1}\right\} \\
&- 8 x_{1}\left(-2 \partial_{2}+2 \partial_{3}-x_{3}+k-2\right) \\
& \cdot\left(-2 \partial_{2}+2 \partial_{3}+x_{3}-k\right) \\
&+ 32 x_{1} x_{2}-8 x_{2}\left(2 \partial_{1}+k-5\right)\left(2 \partial_{1}-k-1\right) \\
&- \chi_{4, k, \nu}, \\
& \chi_{2, k, \nu}=\left\{\nu_{1}^{2}-(k-3)^{2}\right\}+\left\{\nu_{2}^{2}-(k-2)^{2}\right\}, \\
& \chi_{4, k, \nu}=\left\{\nu_{1}^{2}-(k-2)^{2}\right\}\left\{\nu_{2}^{2}-(k-2)^{2}\right\},
\end{aligned}
$$

and $\partial_{i}=x_{i} \frac{\partial}{\partial x_{i}}$ is the Euler operator with respect to the variable x_{i}.

Proof. It is easy to see that the eigenvalues of the scalar actions of C_{2} and C_{4} on $\mathrm{Wh}(\pi, \eta, \tau)$ are $\chi_{2, k, \nu}$ and $\chi_{4, k, \nu}$, respectively. By computing their explicit actions from Lemma 4.3, the equations $\mathcal{D}_{2} \varphi=\mathcal{D}_{4} \varphi=0$ can be obtained. The operator $m_{3}\left(C_{-}\right)$maps the K-type $\tau^{*}=\tau_{(k, k, k)}$ into $\tau_{(k-2, k-2, k-2)}$ in the Harish-Chandra module of π from the definition. However, since $\tau_{(k, k, k)}$ is the corner K-type of π, the K-module $\tau_{(k-2, k-2, k-2)}$ does not occur in the K-types of π. Therefore each element in $\mathrm{Wh}(\pi, \eta, \tau)$ vanishes by the action of $m_{3}\left(C_{-}\right)$, and the equation $\mathcal{D}_{3} \varphi=0$ follows.

By combining the results of Kostant ([6] Theorem 6.8.1) and Matumoto ([8] Corollary 2.2.2, Theorem 6.2.1) together with some standard arguments, we obtain the following assertion.

Corollary 4.5. Let π, τ, and η be as above. Then we have

$$
\operatorname{dim}_{\mathbf{C}} \mathcal{I}_{\eta, \pi}=\operatorname{dim}_{\mathbf{C}} \mathrm{Wh}(\pi, \eta, \tau)=\frac{1}{2}|W|=24
$$

and thus every solution of the holonomic system in Theorem 4.4 gives an element of $\left.\mathrm{Wh}(\pi, \eta, \tau)\right|_{A}$. Here $W \simeq\{ \pm 1\}^{3} \times \mathfrak{S}_{3}$ is the little Weyl group $W\left(\mathfrak{g}, \mathfrak{a}_{\mathfrak{p}}\right)$.
5. Secondary Whittaker functions. The holonomic system (1) has regular singularities along 3 divisors $x_{1}=0, x_{2}=0$, and $x_{3}=0$ with normal crossing at $x=(0,0,0)$, in the sense of [11]. In this section, we determine the power series solutions of the system (1) around the point $x=(0,0,0)$, which are called the secondary Whittaker functions.

First, we give 24 characteristic indices for the secondary Whittaker functions. For a characteristic index $\gamma=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ for the holonomic system (1), put $\delta=\left(\delta_{1}, \delta_{2}, \delta_{3}\right)=\left(\gamma_{1},-\gamma_{1}+\gamma_{2},-\gamma_{2}+\gamma_{3}\right)$. Then we have

$$
\begin{equation*}
\delta=\sigma\left(\frac{\epsilon_{1} \nu_{1}}{2}, \frac{\epsilon_{2} \nu_{2}}{2}, \frac{k-1}{2}\right), \tag{2}
\end{equation*}
$$

with $\epsilon_{1}, \epsilon_{2} \in\{ \pm 1\}$ and $\sigma \in \mathfrak{S}_{3}$. Here \mathfrak{S}_{3} means the symmetric group of degree 3 .

The explicit secondary Whittaker functions for (π, η, τ) are given in the following theorem, which is the main result in this paper.

Theorem 5.1. For each $\gamma \in \mathbf{C}^{3}$ such that δ is given in (2), put

$$
\begin{gathered}
M_{\gamma}(x)=x_{1}^{3 / 2+\gamma_{1}} x_{2}^{5 / 2+\gamma_{2}} x_{3}^{3+\gamma_{3}} \exp \left(-\frac{x_{3}}{2}\right) \\
\times \sum_{l, m, n \geq 0} C_{l, m, n}^{\gamma} x_{1}^{l} x_{2}^{m} x_{3}^{n},
\end{gathered}
$$

where the coefficients $\left\{C_{l, m, n}^{\gamma}\right\}$ are defined as follows: For $l, m, n \in \mathbf{Z}_{\geq 0}$ and constants $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$, put

$$
\begin{aligned}
& k_{l, m, n}=k_{l, m, n}\left(a, b, c, a^{\prime}, b^{\prime}, c^{\prime}\right) \\
& =\frac{1}{n!} \cdot \frac{(m+a)_{n}(-l+b)_{n}}{(c)_{n}} \\
& \times{ }_{4} F_{3}\left(\left.\begin{array}{c}
-n, 1-n-c,-m+a^{\prime}, l+b^{\prime} \\
1-n-m-a, 1-n+l-b, c^{\prime}
\end{array} \right\rvert\, 1\right),
\end{aligned}
$$

where $(a)_{n}$ is Pochhammer's symbol and ${ }_{p} F_{q}$ is the generalized hypergeometric function (cf. [12]). If either δ_{1} or δ_{2} is $\frac{k-1}{2}$, then

$$
\begin{aligned}
C_{l, m, n}^{\gamma}= & \frac{1}{m!} \Gamma\left[\begin{array}{c}
l+m-n+\alpha_{2}, \alpha_{1}, \alpha_{3} \\
m-n+\alpha_{1}, l+\alpha_{2}, m+\alpha_{3}
\end{array}\right] \\
& \times \Gamma\left[\begin{array}{c}
\alpha_{4}, \alpha_{5}, \alpha_{6} \\
n+\alpha_{4}, l+\alpha_{5}, l+\alpha_{6}
\end{array}\right]
\end{aligned}
$$

$$
\begin{array}{r}
\times k_{l, m, n}\left(\alpha_{4},-\alpha_{2}+1,-\alpha_{3}+\alpha_{4}+1\right. \\
\left.0, \alpha_{2}+\alpha_{4}-1, \alpha_{3}+\alpha_{4}-1\right),
\end{array}
$$

with

$$
\begin{array}{ll}
\alpha_{1}=-\delta_{3}+\frac{k+1}{2}, & \alpha_{2}=\delta_{1}-\delta_{3}+1 \\
\alpha_{3}=\delta_{*}-\delta_{3}+1, & \alpha_{4}=\delta_{*}+\delta_{3}+1 \\
\alpha_{5}=\delta_{1}-\frac{k-3}{2}, & \alpha_{6}=-\delta_{2}+\frac{k+1}{2}
\end{array}
$$

and $\delta_{*}=\delta_{1}+\delta_{2}-\frac{k-1}{2}$. If $\delta_{3}=\frac{k-1}{2}$, then

$$
\begin{aligned}
C_{l, m, n}^{\gamma}= & \frac{1}{(m-n)!l!} \Gamma\left[\begin{array}{c}
l+m-n+\beta_{1}, \beta_{2} \\
l+\beta_{1}, l+\beta_{2}
\end{array}\right] \\
& \times \Gamma\left[\begin{array}{c}
\beta_{3}, \beta_{1}, \beta_{4} \\
n+\beta_{3}, m+\beta_{1}, m+\beta_{4}
\end{array}\right] \\
& \times k_{m, l, n}\left(\beta_{3},-\beta_{1}+1,-\beta_{2}+\beta_{3}+1\right. \\
& \left.0, \beta_{1}+\beta_{3}-1, \beta_{2}+\beta_{3}-1\right)
\end{aligned}
$$

for $m \geq n$ and $C_{l, m, n}^{\gamma}=0$ for $m<n$, where

$$
\begin{array}{ll}
\beta_{1}=\delta_{1}-\frac{k-3}{2}, & \beta_{2}=\delta_{1}-\delta_{2}+1 \\
\beta_{3}=\delta_{1}+\delta_{2}+1, & \beta_{4}=\delta_{2}-\frac{k-3}{2}
\end{array}
$$

Then, the set $\left\{M_{\gamma}(x)\right\}$ gives a system of linearly independent solutions of the holonomic system (1) at $x=(0,0,0)$.

Proof. To obtain this result, we transform the system (1) into a system of difference equations for the coefficients of formal power series solutions. The resulted system can be reduced the difference equations in the next lemma.

Lemma 5.2. For any constants $a, b, c, a^{\prime}, b^{\prime}$, c^{\prime} such that $c, c^{\prime} \notin \mathbf{Z}_{\leq 0}$ and $a, b \notin \mathbf{Z},\left\{k_{l, m, n}\right\}$ satisfies the following two difference equations.

$$
\begin{aligned}
f_{1}(l, m, n) k_{l, m, n}= & f_{2}(l, m, n) k_{l, m, n-1} \\
& +2\left(m-a^{\prime}\right)(m+a-c) k_{l, m-1, n} \\
g(l, m, n) k_{l, m, n}= & \left(m-a^{\prime}\right)(m+a-c) k_{l, m-1, n} \\
& -(l-b)\left(l+b^{\prime}-c^{\prime}\right) k_{l-1, m, n}
\end{aligned}
$$

Here

$$
\begin{aligned}
f_{1}(l, m)=n^{2} & +\left(-2 m+2 a^{\prime}+c-1\right) n \\
& +2\left(m-a^{\prime}\right)(m+a-c) \\
f_{2}(l, m, n)= & n^{2}-\left(m+l-2 a^{\prime}-a-b+2\right) n
\end{aligned}
$$

$$
\begin{aligned}
& -\left(a+a^{\prime}-1\right)\left(m+l-a^{\prime}-b+1\right), \\
g(l, m, n)= & (l-m-a-b+c) n
\end{aligned}
$$

$$
-\left(l+m-a^{\prime}-b\right)(l-m-a-b+c),
$$

and we promise that $k_{l, m, n}=0$ if l, m, or $n<0$.

References

[1] I. M. Gelfand and A. Zelevinsky, Canonical basis in irreducible representations of $\mathfrak{g l}_{3}$ and its applications, in Group theoretical methods in physics, Vol. II (Yurmala, 1985), 127-146, VNU Sci. Press, Utrecht, 1986.
[2] Harish-Chandra, Spherical functions on a semisimple Lie group I, II, Amer. J. Math. 80 (1958), 241-310, 553-613.
[3] M. Hirano, T. Ishii and T. Oda, Confluence from Siegel-Whittaker functions to Whittaker functions on $S p(2, \mathbf{R})$, Math. Proc. Cambridge Philos. Soc. (To appear).
[4] M. Hirano and T. Oda, Integral switching engine for special Clebsch-Gordan coefficients for the representations of $\mathfrak{g l}_{3}$ with respect to GelfandZelevinsky basis. (Preprint).
[5] T. Ishii, On principal series Whittaker functions on $S p(2, \mathbf{R})$. (Preprint).
[6] B. Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), no. 2, 101184.
[7] H. Maass, Siegel's modular forms and Dirichlet series, Lecture Notes in Math., 216, Springer, Berlin, 1971.
[8] H. Matumoto, Whittaker vectors and the Goodman-Wallach operators, Acta Math. 161 (1988), no. 3-4, 183-241.
[9] R. Miatello and N. R. Wallach, Automorphic forms constructed from Whittaker vectors, J. Funct. Anal. 86 (1989), no. 2, 411-487.
[10] T. Oda and M. Tsuzuki, Automorphic Green functions associated with the secondary spherical functions, Publ. Res. Inst. Math. Sci. 39 (2003), no. 3, 451-533.
[11] T. Oshima, A definition of boundary values of solutions of partial differential equations with regular singularities, Publ. Res. Inst. Math. Sci. 19 (1983), no. 3, 1203-1230.
[12] L. J. Slater, Generalized hypergeometric functions, Cambridge Univ. Press, Cambridge, 1966.
[13] E. Stade, GL(4,R)-Whittaker functions and ${ }_{4} F_{3}(1)$ hypergeometric series, Trans. Amer. Math. Soc. 336 (1993), no. 1, 253-264.

[^0]: 2000 Mathematics Subject Classification. Primary 11F70.
 *) Department of Mathematics, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577.
 ${ }^{* *)}$ Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914.

