Noether's problem for some meta-abelian groups of small degree

By Akinari Hoshi
Department of Mathematical Sciences, Waseda University 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555
(Communicated by Heisuke Hironaka, m. J. a., Jan. 12, 2005)

Abstract

In this note we solve Noether's problem over \mathbf{Q} for some meta-abelian groups of small degree n. Let G be a subgroup of the group of one-dimensional affine transformations on $\mathbf{Z} / n \mathbf{Z}$ which contains $\mathbf{Z} / n \mathbf{Z}$. For $n=9,10,12,14,15$, we show that Noether's problem for G has an affirmative answer by constructing an explicit transcendental basis of the fixed field over \mathbf{Q}.

Key words: Inverse Galois problem; generic polynomial; affine transformation group.

1. Introduction. Let $K=\mathbf{Q}\left(x_{0}, \ldots, x_{n-1}\right)$ be the field of rational functions in n variables and G a transitive subgroup of S_{n} the symmetric group of degree n. Let G act on K by permuting the variables x_{0}, \ldots, x_{n-1}. Emmy Noether $[11,12]$ raised the following problem which is called Noether's problem for G (over \mathbf{Q}): Is the subfield K^{G} of G-invariant elements of K rational (i.e. purely transcendental) over Q? This is one of central problems of the inverse Galois theory because if this problem has an affirmative answer then we get a \mathbf{Q}-generic polynomial for G (cf. [7]). The polynomial $g(\mathbf{t} ; X):=g\left(t_{1}, \ldots, t_{n} ; X\right) \in$ $\mathbf{Q}\left(t_{1}, \ldots, t_{n}\right)[X]$, where t_{1}, \ldots, t_{n} and X are indeterminates, is called \mathbf{Q}-generic for G if the splitting field of $g(\mathbf{t} ; X)$ over $\mathbf{Q}\left(t_{1}, \ldots, t_{n}\right)$ has Galois group G and every Galois extension L / M with $\operatorname{Gal}(L / M) \cong$ G and $M \supset \mathbf{Q}$ is the splitting field of a polynomial $g(\mathbf{a} ; X)$ for some $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in M^{n}$. Namely every G-extension over a field M whose characteristic is zero can be obtained by some specialization of the parameters of $g(\mathbf{t} ; X)$. In this note we shall solve Noether's problem for some meta-abelian groups G of small degree n by constructing an explicit transcendental basis of K^{G} over \mathbf{Q}. Let $\operatorname{Aff}(\mathbf{Z} / n \mathbf{Z})$ be the group of one-dimensional affine transformations on $\mathbf{Z} / n \mathbf{Z}$. We have $\operatorname{Aff}(\mathbf{Z} / n \mathbf{Z}) \cong(\mathbf{Z} / n \mathbf{Z}) \rtimes(\mathbf{Z} / n \mathbf{Z})^{*}$. The main result of this note is the following

Main Theorem. Let G be a subgroup of $\operatorname{Aff}(\mathbf{Z} / n \mathbf{Z})$ containing $\mathbf{Z} / n \mathbf{Z}$. For $n=9,10,12,14,15$, Noether's problem for G has an affirmative answer.

We treated this problem in the cases $n \leq 7$ and $n=11$ in $[3,4,6]$. In the previous paper [6], we ex-

[^0]tended Masuda's method $[8,9]$ for cyclic groups C_{n}, and we also use Masuda's approach in this note (cf. Lemma 1). Note that $n=8$ is the smallest degree for which $K^{C_{n}}$ is not rational over \mathbf{Q}. Moreover it is known that there does not exist \mathbf{Q}-generic polynomial for $C_{8 m}$, and hence Noether's problem for $C_{8 m}$ has a negative answer (see [7]). Recently, however, it has been showed that $K^{D_{8}}, K^{Q D_{8}}$ and $K^{M_{16}}$ are rational over \mathbf{Q}, where D_{8} (resp. $Q D_{8}, M_{16}$) is the dihedral (resp. quasi-dihedral, modular) group of order 16 (see $[1,5]$). The case $n=13$ can not be applied original Masuda's approach as remarked by EndoMiyata [2]. We shall treat some prime degree cases $n=p$ with $p \geq 13$ in a separate paper by studying the structure of the fixed field $K^{C_{p}}$ in detail.
2. Preliminaries. In this section, we recall Masuda's method [8] for cyclic groups and its extension [6] for subgroups of $\operatorname{Aff}(\mathbf{Z} / n \mathbf{Z})$. Let σ be the cyclic permutation of the variables x_{0}, \ldots, x_{n-1}, i.e. $\sigma\left(x_{0}\right)=x_{1}, \ldots, \sigma\left(x_{n-1}\right)=x_{0}$ and τ_{λ} the $x_{0^{-}}$ fixed permutation defined by $\tau_{\lambda}\left(x_{i}\right)=x_{\lambda i}$ for $\lambda \in$ $(\mathbf{Z} / n \mathbf{Z})^{*}$, where we take the subscript of x modulo n. We can identify a subgroup G of $\operatorname{Aff}(\mathbf{Z} / n \mathbf{Z})$ which contains $\mathbf{Z} / n \mathbf{Z}$ with $\left\langle\sigma, \tau_{\lambda_{1}}, \ldots, \tau_{\lambda_{r}}\right\rangle$ for certain $\lambda_{1}, \ldots, \lambda_{r} \in(\mathbf{Z} / n \mathbf{Z})^{*}$. For example, we have $D_{n}=\left\langle\sigma, \tau_{-1}\right\rangle$; the dihedral group of order $2 n$. Let ζ be a primitive n-th root of unity, $\mathrm{k}:=\mathbf{Q}(\zeta)$, $y_{j}:=\sum_{i=0}^{n-1} \zeta^{-i j} x_{i}$, and $c_{j, k}:=y_{j} y_{k} / y_{j+k}$ for $j, k=$ $0, \ldots, n-1$. We shall take the subscript of y and c modulo n, since $y_{j}=y_{m n+j},(j=0, \ldots, n-1)$. We have that $K^{G}(\zeta)=\mathrm{k}\left(x_{0}, \ldots, x_{n-1}\right)^{G}$ for $G \subset S_{n}$ and $\mathrm{k}\left(x_{0}, \ldots, x_{n-1}\right)=\mathrm{k}\left(y_{0}, \ldots, y_{n-1}\right)$. And we see that the actions of σ and τ_{λ} on the y_{j} 's and the $c_{j, k}$'s are given by $\sigma\left(y_{j}\right)=\zeta^{j} y_{j}, \sigma\left(c_{j, k}\right)=c_{j, k}, \tau_{\lambda}\left(y_{j}\right)=$
$y_{\lambda^{-1} j}, \tau_{\lambda}\left(c_{j, k}\right)=c_{\lambda^{-1}{ }_{j, \lambda^{-1}}}$, for $j, k=0, \ldots, n-1$. First we can obtain that
$$
\mathrm{k}\left(x_{0}, \ldots, x_{n-1}\right)^{C_{n}}=\mathrm{k}\left(c_{j, k} \mid 0 \leq j, k \leq n-1\right),
$$
and the $c_{j, k}$'s satisfy the following relations:
\[

$$
\begin{equation*}
c_{j, k}=\frac{c_{1, k} c_{1, k+1} \cdots c_{1, k+j-1}}{c_{1,1} c_{1,2} \cdots c_{1, j-1}}, \quad(j \geq 2) \tag{1}
\end{equation*}
$$

\]

Hence we have
(2) $\mathrm{k}\left(x_{0}, \ldots, x_{n-1}\right)^{C_{n}}=\mathrm{k}\left(c_{1,0}, c_{1,1}, \ldots, c_{1, n-1}\right)$.

Namely $\mathrm{k}\left(x_{0}, \ldots, x_{n-1}\right)^{C_{n}}$ is rational over k for any n. Masuda's method teaches us when we can descend the base field from k to \mathbf{Q}. For $f \in$ $\mathrm{k}\left(x_{0}, \ldots, x_{n-1}\right)^{C_{n}}$, we define a set $[f]_{\text {conj }}:=\{$ all conjugates of f over $\left.K^{C_{n}}\right\}$ and we put $\iota(f):=\#[f]_{\text {conj }}$.

Lemma 1 (Masuda [8]). Suppose that there exist elements $a_{1}, \ldots, a_{t} \in \mathrm{k}\left(x_{0}, \ldots, x_{n-1}\right)^{C_{n}}$ such that $\mathrm{k}\left(x_{0}, \ldots, x_{n-1}\right)^{C_{n}}=\mathrm{k}\left(\left[a_{i}\right]_{\text {conj }} \mid 1 \leq i \leq t\right)$ and $\sum_{i=1}^{t} \iota\left(a_{i}\right)=n$. Let $\omega_{i, 1}, \ldots, \omega_{i, \iota\left(a_{i}\right)}$ be a basis of $\mathrm{k} \cap$ $K^{C_{n}}\left(a_{i}\right)$ over \mathbf{Q}. If we write $a_{i}=\sum_{j=1}^{\iota\left(a_{i}\right)} \omega_{i, j} m_{j, i}$, $\left(m_{j, i} \in K^{C_{n}}\right)$, for $i=1, \ldots, t$, then $K^{C_{n}}=\mathbf{Q}\left(m_{j, i} \mid\right.$ $\left.1 \leq i \leq t, 1 \leq j \leq \iota\left(a_{i}\right)\right)$.

Indeed, in the next section, we shall give such elements a_{1}, \ldots, a_{t} as in above lemma for $n=$ $9,10,12,14,15$ explicitly. For a subgroup $G=$ $\left\langle\sigma, \tau_{\lambda_{1}}, \ldots, \tau_{\lambda_{r}}\right\rangle$ of $\operatorname{Aff}(\mathbf{Z} / n \mathbf{Z})$ containing $\mathbf{Z} / n \mathbf{Z}$, we have from Lemma 1 that

$$
\begin{aligned}
K^{G} & =\left(K^{C_{n}}\right)^{G / C_{n}}=\left(K^{\langle\sigma\rangle}\right)^{\left\langle\tau_{\lambda_{1}}, \ldots, \tau_{\lambda_{r}}\right\rangle} \\
& =\mathbf{Q}\left(m_{j, i} \mid 1 \leq i \leq t, 1 \leq j \leq \iota\left(a_{i}\right)\right)^{\left\langle\tau_{\lambda_{1}}, \ldots, \tau_{\lambda_{r}}\right\rangle}
\end{aligned}
$$

We also can obtain the action of τ_{λ} on the transcendental basis $\left\{m_{j, i}\right\}$ of $K^{C_{n}}$ over \mathbf{Q} by using the equation $\tau_{\lambda}\left(c_{j, k}\right)=\alpha_{\lambda^{-1}}\left(c_{j, k}\right)$ for $\lambda \in(\mathbf{Z} / n \mathbf{Z})^{*}$, where $\alpha_{\lambda} \in \operatorname{Gal}(\mathbf{Q}(\zeta) / \mathbf{Q})$ such that $\alpha_{\lambda}(\zeta)=\zeta^{\lambda}$.

Let $x_{0}^{(j)}, \ldots, x_{n-1}^{(j)},(j=1, \ldots, m)$ be variables and $L:=K\left(x_{0}^{(1)}, \ldots, x_{n-1}^{(1)}, \ldots, x_{0}^{(m)}, \ldots, x_{n-1}^{(m)}\right)$. It is well-known from the No-Name Lemma that if C_{n} acts on L as the cyclic permutation of the variables $x^{(j)}: x_{0} \mapsto \cdots \mapsto x_{n-1} \mapsto x_{0}, x_{0}^{(j)} \mapsto \cdots \mapsto x_{n-1}^{(j)} \mapsto$ $x_{0}^{(j)}$ for $j=1, \ldots, m$, then $L^{C_{n}}$ is rational over $K^{C_{n}}$ (cf. [10],[7, page 22]). Moreover we can give an explicit transcendental basis of $L^{C_{n}}$ over $K^{C_{n}}$.

Lemma 2 ([6]). We have

$$
\begin{aligned}
L^{C_{n}}=K^{C_{n}}(\operatorname{Tr}(& \left.x_{0} x_{0}^{(1)}\right), \ldots, \operatorname{Tr}\left(x_{0} x_{n-1}^{(1)}\right) \\
& \left.\ldots, \operatorname{Tr}\left(x_{0} x_{0}^{(m)}\right), \ldots, \operatorname{Tr}\left(x_{0} x_{n-1}^{(m)}\right)\right)
\end{aligned}
$$

where Tr is the trace under the action of C_{n}.

Proof. The assertion follows from

$$
\begin{aligned}
L=K(\operatorname{Tr} & \left(x_{0} x_{0}^{(1)}\right), \ldots, \operatorname{Tr}\left(x_{0} x_{n-1}^{(1)}\right) \\
& \left.\ldots, \operatorname{Tr}\left(x_{0} x_{0}^{(m)}\right), \ldots, \operatorname{Tr}\left(x_{0} x_{n-1}^{(m)}\right)\right)
\end{aligned}
$$

(see also [6]).
3. Explicit transcendental basis of K^{G}.

We shall solve Noether's problem for subgroups G of $\operatorname{Aff}(\mathbf{Z} / n \mathbf{Z})$ containing $\mathbf{Z} / n \mathbf{Z}$ for each degree $n=$ $9,10,12,14,15$.

For $n=9$, the subgroups of $\operatorname{Aff}(\mathbf{Z} / 9 \mathbf{Z})$ containing $\mathbf{Z} / 9 \mathbf{Z}$ are $C_{9}=\langle\sigma\rangle, D_{9}=\left\langle\sigma, \tau_{-1}\right\rangle\left(\cong C_{9} \rtimes C_{2}\right)$, $G_{9,3}:=\left\langle\sigma, \tau_{4}\right\rangle\left(\cong C_{9} \rtimes C_{3}\right), \operatorname{Aff}(\mathbf{Z} / 9 \mathbf{Z})=\left\langle\sigma, \tau_{2}\right\rangle(\cong$ $\left.C_{9} \rtimes C_{6}\right)$.

Proposition 1. We have

$$
\begin{aligned}
& \mathrm{k}\left(x_{0}, \ldots, x_{8}\right)^{C_{9}} \\
& =\mathrm{k}\left(c_{0,1},\left[c_{1,2}+c_{4,8}+c_{5,7}\right]_{\mathrm{conj}},\left[c_{1,4}\right]_{\mathrm{conj}}\right)
\end{aligned}
$$

Proof. We see easily that $c_{0,1}=y_{0}=x_{0}+\cdots+$ $x_{8} \in K^{C_{9}},\left[c_{1,2}\right]_{\text {conj }}=\left\{c_{1,2}, c_{2,4}, c_{4,8}, c_{1,5}, c_{5,7}, c_{7,8}\right\}$ and $\left[c_{1,4}\right]_{\text {conj }}=\left\{c_{1,4}, c_{2,8}, c_{4,7}, c_{2,5}, c_{1,7}, c_{5,8}\right\}$. By using (1), we can obtain that

$$
\begin{aligned}
& c_{1,1}=\frac{c_{1,6} c_{7,8}}{c_{2,8}}, \quad c_{1,3}=\frac{c_{1,6} c_{7,8}}{c_{4,8}}, \quad c_{1,5}=\frac{c_{2,5} c_{7,8}}{c_{2,8}} \\
& c_{1,6}=\frac{c_{1,2} c_{2,5} c_{4,7}}{c_{2,4} c_{5,7}}, \quad c_{1,7}=\frac{c_{1,2} c_{4,7}}{c_{4,8}}, \quad c_{1,8}=\frac{c_{1,6} c_{7,8}}{c_{0,1}}
\end{aligned}
$$

Therefore it follows from (2) that $\mathrm{k}\left(x_{0}, \ldots, x_{8}\right)^{C_{9}}=$ $\mathrm{k}\left(c_{0,1},\left[c_{1,2}\right]_{\text {conj }},\left[c_{1,4}\right]_{\text {conj }}\right)$. And we have the following relations:

$$
\begin{aligned}
& c_{1,5} c_{2,8}-c_{2,5} c_{7,8}=0, \quad c_{2,4} c_{5,8}-c_{2,5} c_{7,8}=0 \\
& c_{1,2} c_{4,7}-c_{1,7} c_{4,8}=0, \quad c_{1,2} c_{4,7}-c_{1,4} c_{5,7}=0
\end{aligned}
$$

Put $u_{1,2}:=c_{1,2}+c_{4,8}+c_{5,7}, u_{1,5}:=c_{1,5}+c_{2,4}+c_{7,8}$, then we have from above equations that

$$
\begin{array}{ll}
c_{4,8}=\frac{c_{1,4} c_{4,7} u_{1,2}}{W_{1}}, & c_{5,7}=\frac{c_{1,7} c_{4,7} u_{1,2}}{W_{1}} \\
c_{2,4}=\frac{c_{2,5} c_{2,8} u_{1,5}}{W_{2}}, & c_{7,8}=\frac{c_{2,8} c_{5,8} u_{1,5}}{W_{2}},
\end{array}
$$

where $W_{1}=c_{1,4} c_{1,7}+c_{1,4} c_{4,7}+c_{1,7} c_{4,7}, W_{2}=$ $c_{2,5} c_{2,8}+c_{2,5} c_{5,8}+c_{2,8} c_{5,8}$. The assertion follows from $\mathrm{k}\left(x_{0}, \ldots, x_{8}\right)^{C_{9}}=\mathrm{k}\left(c_{0,1}, u_{1,2}, u_{1,5},\left[c_{1,4}\right]_{\text {conj }}\right)$.

Thus it follows from Lemma 1 that

$$
K^{C_{9}}=\mathbf{Q}\left(y_{0}, s_{1}^{\prime}, s_{2}^{\prime}, t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{6}^{\prime}\right)
$$

where

$$
\begin{aligned}
c_{1,2}+c_{4,8}+c_{5,7} & =s_{1}^{\prime} \zeta^{3}+s_{2}^{\prime} \zeta^{6} \\
c_{1,4} & =t_{1}^{\prime} \zeta+t_{2}^{\prime} \zeta^{2}+\cdots+t_{6}^{\prime} \zeta^{6}
\end{aligned}
$$

We see that the τ_{2}-action on $K^{C_{9}}$ is given by
$y_{0} \mapsto y_{0}, s_{1}^{\prime} \leftrightarrow s_{2}^{\prime}$,
$t_{1}^{\prime} \mapsto t_{2}^{\prime}-t_{5}^{\prime}, t_{2}^{\prime} \mapsto t_{4}^{\prime}, t_{3}^{\prime} \leftrightarrow t_{6}^{\prime}, t_{4}^{\prime} \mapsto-t_{5}^{\prime}, t_{5}^{\prime} \mapsto t_{1}^{\prime}$,
since $\tau_{2}\left(c_{1,4}\right)=\alpha_{5}\left(c_{1,4}\right)$, where $\alpha_{5}(\zeta)=\zeta^{5}$. We use the following non-singular transformation

$$
\left[\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3} \\
t_{4} \\
t_{5} \\
t_{6}
\end{array}\right]:=\left[\begin{array}{cccccc}
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 1 \\
-1 & 0 & 1 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
t_{1}^{\prime} \\
t_{2}^{\prime} \\
t_{3}^{\prime} \\
t_{4}^{\prime} \\
t_{5}^{\prime} \\
t_{6}^{\prime}
\end{array}\right]
$$

Then we have

$$
K^{C_{9}}=\mathbf{Q}\left(y_{0}, s_{1}^{\prime}, s_{2}^{\prime}, t_{1}, t_{2}, \ldots, t_{6}\right)
$$

and the τ_{2}-action on it can be described as

$$
y_{0} \mapsto y_{0}, \quad s_{1}^{\prime} \leftrightarrow s_{2}^{\prime}, t_{1} \mapsto t_{2} \mapsto \cdots \mapsto t_{6} \mapsto t_{1}
$$

We see that $s_{1}^{\prime}=f_{1}^{(3)} / f_{3}^{(2)}, s_{2}^{\prime}=f_{2}^{(3)} / f_{3}^{(2)}, t_{i}=$ $g_{i}^{(7)} / g_{7}^{(6)}$, where $f_{j}^{(k)}, g_{i}^{(k)}$ are homogeneous elements of degree k in $\mathbf{Q}\left[x_{0}, \ldots, x_{8}\right]$ for $j=1,2,3$ and $i=$ $1, \ldots, 7$. From Lemma 2, we put

$$
\begin{aligned}
& s_{1}:=s_{1}^{\prime}\left(t_{1}+t_{3}+t_{5}\right)+s_{2}^{\prime}\left(t_{2}+t_{4}+t_{6}\right) \\
& s_{2}:=s_{1}^{\prime}\left(t_{2}+t_{4}+t_{6}\right)+s_{2}^{\prime}\left(t_{1}+t_{3}+t_{5}\right)
\end{aligned}
$$

then we see that s_{1}, s_{2} are τ_{2}-invariants, i.e. $\operatorname{Aff}(\mathbf{Z} / 9 \mathbf{Z})$-invariants, and we have

$$
K^{C_{9}}=\mathbf{Q}\left(y_{0}, s_{1}, s_{2}, t_{1}, t_{2}, \ldots, t_{6}\right)
$$

For D_{9} and $G_{9,3}=\left\langle\sigma, \tau_{4}\right\rangle$, since the τ_{-1}-action (resp. τ_{4}-action) on $K^{C_{9}}$ above is given by $t_{1} \leftrightarrow t_{4}, t_{2} \leftrightarrow t_{5}$, $t_{3} \leftrightarrow t_{6}$ (resp. $t_{1} \mapsto t_{3} \mapsto t_{5} \mapsto t_{1}, t_{2} \mapsto t_{4} \mapsto t_{6} \mapsto$ t_{2}), we have from Lemma 2 that

$$
\begin{aligned}
& K^{D_{9}}=\left(K^{C_{9}}\right)^{\left\langle\tau_{-1}\right\rangle} \\
& =\mathbf{Q}\left(y_{0}, s_{1}, s_{2}, t_{1}+t_{4}, t_{1} t_{4}, t_{1} t_{2}+t_{4} t_{5}\right. \\
& \left.\quad t_{1} t_{5}+t_{2} t_{4}, t_{1} t_{3}+t_{4} t_{6}, t_{1} t_{6}+t_{3} t_{4}\right) \\
& K^{G_{9,3}}=\left(K^{C_{9}}\right)^{\left\langle\tau_{4}\right\rangle} \\
& =\mathbf{Q}\left(y_{0}, s_{1}, s_{2}, t_{1}+t_{3}+t_{5}, \frac{\operatorname{Nr}\left(t_{1}+t_{3}-2 t_{5}\right)}{\operatorname{Tr}\left(t_{1}^{2}-t_{1} t_{3}\right)}\right. \\
& \left.\quad \frac{\operatorname{Nr}\left(t_{1}-t_{3}\right)}{\operatorname{Tr}\left(t_{1}^{2}-t_{1} t_{3}\right)}, \operatorname{Tr}\left(t_{1} t_{2}\right), \operatorname{Tr}\left(t_{1} t_{4}\right), \operatorname{Tr}\left(t_{1} t_{6}\right)\right)
\end{aligned}
$$

where Nr and Tr are the norm and the trace under the action of τ_{4}. Because it is well-known a transcendental basis of $\mathbf{Q}\left(x_{0}, \ldots, x_{5}\right)^{C_{6}}=\mathbf{Q}\left(z_{1}, \ldots, z_{6}\right)$ over \mathbf{Q} (see, for example, [6]), we can obtain an explicit transcendental basis of $K^{\text {Aff(}(\mathbf{Z} / 9 \mathbf{Z})}$ over \mathbf{Q} by using z_{1}, \ldots, z_{6}.

For $n=10$, we see that the subgroups of $\operatorname{Aff}(\mathbf{Z} / 10 \mathbf{Z})$ containing $\mathbf{Z} / 10 \mathbf{Z}$ are $C_{10}=\langle\sigma\rangle, D_{10}=$ $\left\langle\sigma, \tau_{-1}\right\rangle, \operatorname{Aff}(\mathbf{Z} / 10 \mathbf{Z})=\left\langle\sigma, \tau_{3}\right\rangle\left(\cong C_{10} \rtimes C_{4}\right)$. In the previous paper [6], we showed the following

Proposition 2 ([6]). We have

$$
\begin{aligned}
& \mathrm{k}\left(x_{0}, \ldots, x_{9}\right)^{C_{10}} \\
& =\mathrm{k}\left(c_{0,1},\left[c_{1,4}\right]_{\mathrm{conj}},\left[c_{1,8}\right]_{\mathrm{conj}}, c_{1,9}+c_{3,7}\right)
\end{aligned}
$$

Hence, by applying Lemma 1 to Proposition 2, we have

$$
K^{C_{10}}=\mathbf{Q}\left(y_{0}, r_{1}, s_{1}^{\prime}, \ldots, s_{4}^{\prime}, t_{1}, \ldots, t_{4}\right)
$$

where

$$
\begin{aligned}
& r_{1}=c_{1,9}+c_{3,7} \\
& c_{1,4}=s_{1}^{\prime} \zeta+s_{2}^{\prime} \zeta^{3}+s_{4}^{\prime} \zeta^{7}+s_{3}^{\prime} \zeta^{9} \\
& c_{1,8}=t_{1} \zeta+t_{2} \zeta^{3}+t_{4} \zeta^{7}+t_{3} \zeta^{9}
\end{aligned}
$$

And the action of τ_{3} on it is given by

$$
\begin{aligned}
& y_{0} \mapsto y_{0}, r_{1} \mapsto r_{1}, \\
& s_{1}^{\prime} \mapsto s_{2}^{\prime} \mapsto s_{3}^{\prime} \mapsto s_{4}^{\prime} \mapsto s_{1}^{\prime}, \\
& t_{1} \mapsto t_{2} \mapsto t_{3} \mapsto t_{4} \mapsto t_{1} .
\end{aligned}
$$

We also see that $s_{i}^{\prime}=f_{i}^{(5)} / f_{5}^{(4)}, t_{j}=g_{j}^{(5)} / g_{5}^{(4)}$, where $f_{i}^{(k)}, g_{j}^{(k)}$ are homogeneous elements of degree k in $\mathbf{Q}\left[x_{0}, \ldots, x_{9}\right]$ for $i, j=1, \ldots, 5$. From Lemma 2, we put $s_{i}:=\operatorname{Tr}\left(s_{1}^{\prime} t_{i}\right)$ for $i=1, \ldots, 4$, where Tr is the trace under the action of τ_{3}, then we see that s_{1}, \ldots, s_{4} are τ_{3}-invariants (i.e. $\operatorname{Aff}(\mathbf{Z} / 10 \mathbf{Z})$ invariants) and we have

$$
K^{C_{10}}=\mathbf{Q}\left(y_{0}, r_{1}, s_{1}, \ldots, s_{4}, t_{1}, \ldots, t_{4}\right)
$$

Therefore if we put $u_{1}:=t_{1}+t_{3}, u_{2}:=t_{2}+t_{4}, v_{1}:=$ $t_{1}-t_{3}, v_{2}:=t_{2}-t_{4}$, then we get

$$
\begin{gathered}
K^{D_{10}}=\mathbf{Q}\left(y_{0}, r_{1}, s_{1}, s_{2}, s_{3}, s_{4}, t_{1}+t_{3}\right. \\
\\
\left.t_{1} t_{3}, t_{1} t_{2}+t_{3} t_{4}, t_{1} t_{4}+t_{2} t_{3}\right) \\
K^{\operatorname{Aff}(\mathbf{Z} / 10 \mathbf{Z})}=\mathbf{Q}\left(y_{0}, r_{1}, s_{1}, \ldots, s_{4}, u_{1}+u_{2}, v_{1}^{2}+v_{2}^{2}\right. \\
\\
\left.\quad\left(u_{1}-u_{2}\right) v_{1} v_{2},\left(u_{1}-u_{2}\right)\left(v_{1}^{2}-v_{2}^{2}\right)\right)
\end{gathered}
$$

For $n=12$, the groups $C_{12}=\langle\sigma\rangle, D_{12}=$ $\left\langle\sigma, \tau_{-1}\right\rangle, G_{12,2}^{(1)}=\left\langle\sigma, \tau_{5}\right\rangle, G_{12,2}^{(2)}=\left\langle\sigma, \tau_{7}\right\rangle$ and $\operatorname{Aff}(\mathbf{Z} / 12 \mathbf{Z})=\left\langle\sigma, \tau_{-1}, \tau_{5}\right\rangle\left(\cong C_{12} \rtimes\left(C_{2} \times C_{2}\right)\right)$ are subgroups of $\operatorname{Aff}(\mathbf{Z} / 12 \mathbf{Z})$ which contain $\mathbf{Z} / 12 \mathbf{Z}$.

Proposition 3. We have

$$
\begin{aligned}
\mathrm{k}\left(x_{0}, \ldots, x_{11}\right)^{C_{12}}= & \mathrm{k}\left(c_{0,1},\left[c_{1,2}+c_{5,10}\right]_{\mathrm{conj}},\left[c_{1,3}\right]_{\mathrm{conj}},\right. \\
& {\left.\left[c_{1,5}\right]_{\mathrm{conj}},\left[c_{1,7}\right]_{\mathrm{conj}}, c_{1,11}+c_{5,7}\right) }
\end{aligned}
$$

Proof. We have that $c_{0,1}=y_{0}=x_{0}+\cdots+$ $x_{11} \in K^{C_{12}},\left[c_{1,2}\right]_{\text {conj }}=\left\{c_{1,2}, c_{5,10}, c_{2,7}, c_{10,11}\right\}$, $\left[c_{1,3}\right]_{\text {conj }}=\left\{c_{1,3}, c_{3,5}, c_{7,9}, c_{9,11}\right\}, \quad\left[c_{1,5}\right]_{\text {conj }}=$ $\left\{c_{1,5}, c_{7,11}\right\},\left[c_{1,7}\right]_{\text {conj }}=\left\{c_{1,7}, c_{5,11}\right\}$ and $\left[c_{1,11}\right]_{\text {conj }}=$ $\left\{c_{1,11}, c_{5,7}\right\}$. By using (1), we can obtain that
$c_{1,1}=\frac{c_{0,1} c_{1,7} c_{1,11}}{c_{2,7} c_{9,11}}, c_{1,4}=\frac{c_{0,1} c_{1,11}}{c_{5,11}}, c_{1,6}=\frac{c_{0,1} c_{1,11}}{c_{7,11}}$,
$c_{1,8}=\frac{c_{0,1} c_{1,11}}{c_{9,11}}, \quad c_{1,9}=\frac{c_{0,1} c_{1,11}}{c_{10,11}}, \quad c_{1,10}=\frac{c_{1,3} c_{5,10}}{c_{5,11}}$.
Hence it follows from (2) that $\mathrm{k}\left(x_{0}, \ldots, x_{11}\right)^{C_{12}}=$ $\mathrm{k}\left(c_{0,1},\left[c_{1, i}\right]_{\text {conj }} \mid i=2,3,5,7,11\right)$ and we also have

$$
\begin{aligned}
& c_{1,3} c_{5,10} c_{7,11}-c_{1,5} c_{7,9} c_{10,11}=0 \\
& c_{1,2} c_{5,7} c_{10,11}-c_{1,11} c_{2,7} c_{5,10}=0 \\
& c_{1,3} c_{5,7} c_{9,11}-c_{1,11} c_{3,5} c_{7,9}=0
\end{aligned}
$$

Put $u_{1,2}:=c_{1,2}+c_{5,10}, u_{2,7}:=c_{2,7}+c_{10,11}, u_{1,11}:=$ $c_{1,11}+c_{5,7}$, then we have from above equations that

$$
\begin{aligned}
c_{5,10} & =\frac{c_{7,9}\left(c_{3,5} c_{7,11} u_{1,2}-c_{1,5} c_{9,11} u_{2,7}\right)}{c_{7,11}\left(c_{3,5} c_{7,9}-c_{1,3} c_{9,11}\right)} \\
c_{10,11} & =\frac{c_{1,3}\left(c_{3,5} c_{7,11} u_{1,2}-c_{1,5} c_{9,11} u_{2,7}\right)}{c_{1,5}\left(c_{3,5} c_{7,9}-c_{1,3} c_{9,11}\right)} \\
c_{5,7} & =\frac{c_{3,5} c_{7,9} u_{1,11}}{c_{3,5} c_{7,9}+c_{1,3} c_{9,11}}
\end{aligned}
$$

Thus the assertion follows from $\mathrm{k}\left(x_{0}, \ldots, x_{11}\right)^{C_{12}}=$ $\mathrm{k}\left(c_{0,1}, u_{1,2}, u_{2,7},\left[c_{1,3}\right]_{\mathrm{conj}},\left[c_{1,5}\right]_{\mathrm{conj}},\left[c_{1,7}\right]_{\mathrm{conj}}, u_{1,11}\right)$.

By applying Lemma 1 to Proposition 3, we have

$$
K^{C_{12}}=\mathbf{Q}\left(y_{0}, r_{1}, s_{1}^{\prime}, s_{2}^{\prime}, s_{3}^{\prime}, s_{4}^{\prime}, t_{1}, t_{2}, u_{1}^{\prime}, u_{2}^{\prime}, v_{1}, v_{2}\right)
$$

where

$$
\begin{aligned}
r_{1} & =c_{1,11}+c_{5,7} \\
c_{1,3} & =s_{1}^{\prime} \zeta+s_{2}^{\prime} \zeta^{2}+s_{3}^{\prime} \zeta^{3}+s_{4}^{\prime} \zeta^{4} \\
c_{1,5} & =t_{1}\left(\zeta^{2}-\zeta^{4}\right)+t_{2} \zeta^{3} \\
c_{1,7} & =u_{1}^{\prime} \zeta^{2}+u_{2}^{\prime} \zeta^{4} \\
c_{1,2}+c_{5,10} & =v_{1}\left(\zeta^{2}-\zeta^{4}\right)+v_{2} \zeta^{3} .
\end{aligned}
$$

Since $\zeta^{2}-\zeta^{4}=1$, we have that y_{0}, r_{1}, t_{1}, v_{1} are $\operatorname{Aff}(\mathbf{Z} / 12 \mathbf{Z})$-invariants. From the equation $\tau_{\lambda}\left(c_{j, k}\right)=\alpha_{\lambda^{-1}}\left(c_{j, k}\right)$, we obtain that the action of τ_{-1} (resp. τ_{5}, τ_{7}) on $K^{C_{12}}$ above is given as follows: $\left(s_{1}^{\prime}, s_{2}^{\prime}, s_{3}^{\prime}, s_{4}^{\prime}, t_{2}, u_{1}^{\prime}, u_{2}^{\prime}, v_{2}\right) \mapsto$ $\left(s_{1}^{\prime},-s_{4}^{\prime},-\left(s_{1}^{\prime}+s_{3}^{\prime}\right),-s_{2}^{\prime},-t_{2},-u_{2}^{\prime},-u_{1}^{\prime},-v_{2}\right)$, (resp. $\quad\left(-s_{1}^{\prime},-s_{4}^{\prime}, s_{1}^{\prime}+s_{3}^{\prime},-s_{2}^{\prime}, t_{2},-u_{2}^{\prime},-u_{1}^{\prime}, v_{2}\right)$, $\left.\left(-s_{1}, s_{2},-s_{3}, s_{4},-t_{2}, u_{1}^{\prime}, u_{2}^{\prime},-v_{2}\right)\right)$. Now we use the following bi-rational transformation:

$$
\left\{\begin{array} { l }
{ s _ { 1 } : = s _ { 1 } ^ { \prime } , } \\
{ s _ { 2 } : = s _ { 2 } ^ { \prime } + s _ { 4 } ^ { \prime } , } \\
{ s _ { 3 } : = s _ { 1 } ^ { \prime } + 2 s _ { 3 } ^ { \prime } , } \\
{ s _ { 4 } : = s _ { 2 } ^ { \prime } - s _ { 4 } ^ { \prime } , } \\
{ u _ { 1 } : = u _ { 1 } ^ { \prime } + u _ { 2 } ^ { \prime } , } \\
{ u _ { 2 } : = u _ { 1 } ^ { \prime } - u _ { 2 } ^ { \prime } , }
\end{array} \quad \left\{\begin{array}{l}
s_{1}^{\prime}=s_{1}, \\
s_{2}^{\prime}=\left(s_{2}+s_{4}\right) / 2 \\
s_{3}^{\prime}=\left(-s_{1}+s_{3}\right) / 2 \\
s_{4}^{\prime}=\left(s_{2}-s_{4}\right) / 2 \\
u_{1}^{\prime}=\left(u_{1}+u_{2}\right) / 2 \\
u_{2}^{\prime}=\left(u_{1}-u_{2}\right) / 2
\end{array}\right.\right.
$$

Then we have that s_{4}, u_{2} are $\operatorname{Aff}(\mathbf{Z} / 12 \mathbf{Z})$-invariants and $\tau_{-1}:\left(s_{1}, s_{2}, s_{3}, u_{1}\right) \mapsto\left(s_{1},-s_{2},-s_{3},-u_{1}\right), \tau_{5}:$ $\left(s_{1}, s_{2}, s_{3}, u_{1}\right) \mapsto\left(-s_{1},-s_{2}, s_{3},-u_{1}\right), \tau_{7}=\tau_{-1} \tau_{5}$. We put $W:=\left(y_{0}, r_{1}, s_{4}, t_{1}, u_{2}, v_{1}\right)$ then $K^{C_{12}}=$ $\mathbf{Q}\left(W, s_{1}, s_{2}, s_{3}, t_{2}, u_{1}, v_{2}\right)$, and hence we get

$$
\begin{aligned}
& K^{D_{12}}=\mathbf{Q}\left(W, s_{1}, s_{2}^{2}, \frac{s_{3}}{s_{2}}, \frac{t_{2}}{s_{2}}, \frac{u_{1}}{s_{2}}, \frac{v_{2}}{s_{2}}\right), \\
& K^{G_{12,2}^{(1)}}=\mathbf{Q}\left(W, s_{1}^{2}, \frac{s_{2}}{s_{1}}, s_{3}, t_{2}, \frac{u_{1}}{s_{1}}, v_{2}\right), \\
& K^{G_{12,2}^{(2)}}=\mathbf{Q}\left(W, s_{1}^{2}, s_{2}, \frac{s_{3}}{s_{1}}, \frac{t_{2}}{s_{1}}, u_{1}, \frac{v_{2}}{s_{1}}\right) .
\end{aligned}
$$

Since τ_{5} acts on $K^{D_{12}}$ as

$$
\begin{aligned}
& \left(s_{1}, s_{2}^{2}, \frac{s_{3}}{s_{2}}, \frac{t_{2}}{s_{2}}, \frac{u_{1}}{s_{2}}, \frac{v_{2}}{s_{2}}\right) \\
& \quad \mapsto\left(-s_{1}, s_{2}^{2},-\frac{s_{3}}{s_{2}},-\frac{t_{2}}{s_{2}}, \frac{u_{1}}{s_{2}},-\frac{v_{2}}{s_{2}}\right),
\end{aligned}
$$

we have

$$
K^{\operatorname{Aff}(\mathbf{Z} / 12 \mathbf{Z})}=\mathbf{Q}\left(W, s_{1}^{2}, s_{2}^{2}, \frac{s_{3}}{s_{1} s_{2}}, \frac{t_{2}}{s_{1} s_{2}}, \frac{u_{1}}{s_{2}}, \frac{v_{2}}{s_{1} s_{2}}\right) .
$$

For $n=14$, we have that the subgroups of $\operatorname{Aff}(\mathbf{Z} / 14 \mathbf{Z})$ containing $\mathbf{Z} / 14 \mathbf{Z}$ are $C_{14}=\langle\sigma\rangle, D_{14}=$ $\left\langle\sigma, \tau_{-1}\right\rangle, G_{14,3}:=\left\langle\sigma, \tau_{9}\right\rangle\left(\cong C_{14} \rtimes C_{3}\right), \operatorname{Aff}(\mathbf{Z} / 14 \mathbf{Z})=$ $\left\langle\sigma, \tau_{3}\right\rangle\left(\cong C_{14} \rtimes C_{6}\right)$.

Proposition 4. We have

$$
\begin{aligned}
& \mathrm{k}\left(x_{0}, \ldots, x_{13}\right)^{C_{14}} \\
& =\mathrm{k}\left(c_{0,1},\left[c_{1,6}\right]_{\mathrm{conj}},\left[c_{1,12}\right]_{\mathrm{conj}}, c_{1,13}+c_{3,11}+c_{5,9}\right)
\end{aligned}
$$

Proof. We have that $c_{0,1}=y_{0}=x_{0}+\cdots+x_{13} \in$ $K^{C_{14}},\left[c_{1,6}\right]_{\text {conj }}=\left\{c_{1,6}, c_{3,4}, c_{2,5}, c_{9,12}, c_{10,11}, c_{8,13}\right\}$, $\left[c_{1,12}\right]_{\mathrm{conj}}=\left\{c_{1,12}, c_{3,8}, c_{4,5}, c_{9,10}, c_{6,11}, c_{2,13}\right\}$ and $\left[c_{1,13}\right]_{\mathrm{conj}}=\left\{c_{1,13}, c_{3,11}, c_{5,9}\right\}$. By using (1), we can obtain that

$$
\begin{aligned}
& c_{1,1}=\frac{c_{0,1} c_{1,13}}{c_{2,13}}, \quad c_{1,2}=\frac{c_{1,5} c_{2,5} c_{6,11} c_{9,10}}{c_{0,1} c_{5,9} c_{10,11}} \\
& c_{1,3}=\frac{c_{0,1} c_{1,13} c_{3,8} c_{10,11}}{c_{4,5} c_{8,13} c_{9,10}}, \quad c_{1,4}=\frac{c_{1,5} c_{3,4} c_{6,11} c_{9,10}}{c_{0,1} c_{5,9} c_{10,11}} \\
& c_{1,5}=\frac{c_{0,1} c_{1,13} c_{2,5}}{c_{1,6} c_{2,13}}, \quad c_{1,7}=\frac{c_{0,1} c_{1,13}}{c_{8,13}} \\
& c_{1,8}=\frac{c_{1,5} c_{3,8} c_{6,11}}{c_{0,1} c_{5,9}}, \quad c_{1,9}=\frac{c_{1,5} c_{3,4} c_{6,11}}{c_{4,5} c_{10,11}}
\end{aligned}
$$

$$
c_{1,10}=\frac{c_{1,13} c_{3,8} c_{10,11}}{c_{3,11} c_{8,13}}, \quad c_{1,11}=\frac{c_{1,5} c_{3,4} c_{6,11}}{c_{4,5} c_{9,12}}
$$

Thus it follows from (2) that $\mathrm{k}\left(x_{0}, \ldots, x_{13}\right)^{C_{14}}=$ $\mathrm{k}\left(c_{0,1},\left[c_{1,6}\right]_{\text {conj }},\left[c_{1,12}\right]_{\text {conj }},\left[c_{1,13}\right]_{\text {conj }}\right)$. We also get the following two relations:

$$
\begin{aligned}
& c_{1,6} c_{3,11} c_{4,5} c_{8,13} c_{9,10}-c_{1,13} c_{3,4} c_{3,8} c_{6,11} c_{10,11}=0 \\
& c_{2,5} c_{3,11} c_{4,5} c_{9,10} c_{9,12}-c_{1,12} c_{2,13} c_{3,4} c_{5,9} c_{10,11}=0
\end{aligned}
$$

Put $r_{1}:=c_{1,13}+c_{3,11}+c_{5,9}$, then we have

$$
\begin{aligned}
c_{3,11} & =\frac{c_{1,12} c_{2,13} c_{3,4} c_{3,8} c_{6,11} c_{10,11} r_{1}}{c_{1,6} c_{8,13} v_{1} v_{2}+c_{2,5} c_{9,12} v_{2} v_{3}+c_{3,4} c_{10,11} v_{1} v_{3}} \\
c_{5,9} & =\frac{c_{2,5} c_{3,8} c_{4,5} c_{6,11} c_{9,10} c_{9,12} r_{1}}{c_{1,6} c_{8,13} v_{1} v_{2}+c_{2,5} c_{9,12} v_{2} v_{3}+c_{3,4} c_{10,11} v_{1} v_{3}}
\end{aligned}
$$

where $v_{1}=c_{1,12} c_{2,13}, v_{2}=c_{4,5} c_{9,10}, v_{3}=c_{3,8} c_{6,11}$.
Hence the assertion follows.
From Lemma 1 we have

$$
K^{C_{14}}=\mathbf{Q}\left(y_{0}, r_{1}, s_{1}^{\prime}, \ldots, s_{6}^{\prime}, t_{1}, \ldots, t_{6}\right)
$$

where

$$
\begin{aligned}
r_{1} & =c_{1,13}+c_{3,11}+c_{5,9} \\
c_{1,6} & =s_{1}^{\prime} \zeta+s_{2}^{\prime} \zeta^{3}+s_{3}^{\prime} \zeta^{9}+s_{4}^{\prime} \zeta^{13}+s_{5}^{\prime} \zeta^{11}+s_{6}^{\prime} \zeta^{5} \\
c_{1,12} & =t_{1} \zeta+t_{2} \zeta^{3}+t_{3} \zeta^{9}+t_{4} \zeta^{13}+t_{5} \zeta^{11}+t_{6} \zeta^{5}
\end{aligned}
$$

and the τ_{3}-action on it is given by

$$
\begin{aligned}
& y_{0} \mapsto y_{0}, r_{1} \mapsto r_{1} \\
& s_{1}^{\prime} \mapsto s_{2}^{\prime} \mapsto \cdots \mapsto s_{6}^{\prime} \mapsto s_{1}^{\prime} \\
& t_{1} \mapsto t_{2} \mapsto \cdots \mapsto t_{6} \mapsto t_{1}
\end{aligned}
$$

since $\tau_{3}\left(c_{1, k}\right)=\alpha_{5}\left(c_{1, k}\right)$ for $k=6,12$. From Lemma 2, we put $s_{i}:=\operatorname{Tr}\left(s_{1}^{\prime} t_{i}\right)$ for $i=1, \ldots, 6$, where Tr is the trace under the action of τ_{3}, then we see that s_{1}, \ldots, s_{6} are $\operatorname{Aff}(\mathbf{Z} / 14 \mathbf{Z})$-invariants and

$$
K^{C_{14}}=\mathbf{Q}\left(y_{0}, r_{1}, s_{1}, \ldots, s_{6}, t_{1}, \ldots, t_{6}\right)
$$

Therefore we obtain an explicit transcendental basis of $K^{D_{14}}, K^{G_{14,3}}$ and $K^{\operatorname{Aff}(\mathbf{Z} / 14 \mathbf{Z})}$ by using the same manner as in the case $n=9$.

For $n=15$, we see that the subgroups of $\operatorname{Aff}(\mathbf{Z} / 15 \mathbf{Z})$ containing $\mathbf{Z} / 15 \mathbf{Z}$ are $C_{15}=\langle\sigma\rangle, D_{15}=$ $\left\langle\sigma, \tau_{-1}\right\rangle, G_{15,2}^{(1)}:=\left\langle\sigma, \tau_{4}\right\rangle,\left(\cong C_{15} \rtimes C_{2} \cong C_{5} \rtimes C_{6} \cong\right.$ $\left.D_{5} \times C_{3}\right), G_{15,2}^{(2)}:=\left\langle\sigma, \tau_{11}\right\rangle,\left(\cong C_{15} \rtimes C_{2} \cong S_{3} \times C_{5}\right)$, $G_{15,2,2}:=\left\langle\sigma, \tau_{-1}, \tau_{4}\right\rangle\left(\cong C_{15} \rtimes\left(C_{2} \times C_{2}\right)\right), G_{15,4}:=$ $\left\langle\sigma, \tau_{2}\right\rangle\left(\cong C_{15} \rtimes C_{4}\right), \operatorname{Aff}(\mathbf{Z} / 15 \mathbf{Z})=\left\langle\sigma, \tau_{-1}, \tau_{2}\right\rangle(\cong$ $\left.C_{15} \rtimes\left(C_{2} \times C_{4}\right)\right)$. We note that there are precisely 4 groups of order thirty (i.e. $\left.C_{30}, D_{15}, G_{15,2}^{(1)}, G_{15,2}^{(2)}\right)$, (cf. [13]).

Proposition 5. We have

$$
\begin{aligned}
& \mathrm{k}\left(x_{0}, \ldots, x_{14}\right)^{C_{15}} \\
& =\mathrm{k}\left(c_{0,1},\left[c_{1,4}+c_{11,14}\right]_{\mathrm{conj}},\left[c_{1,7}\right]_{\mathrm{conj}},\left[c_{1,11}\right]_{\mathrm{conj}}\right)
\end{aligned}
$$

Proof. We have that $c_{0,1}=y_{0}=x_{0}+\cdots+x_{14} \in$ $K^{C_{15}},\left[c_{1,4}\right]_{\text {conj }}=\left\{c_{1,4}, c_{2,8}, c_{7,13}, c_{11,14}\right\},\left[c_{1,7}\right]_{\text {conj }}=$ $\left\{c_{1,7}, c_{2,14}, c_{4,13}, c_{4,7}, c_{8,11}, c_{2,11}, c_{1,13}, c_{8,14}\right\} \quad$ and $\left[c_{1,11}\right]_{\text {conj }}=\left\{c_{1,11}, c_{2,7}, c_{4,14}, c_{8,13}\right\}$. By using (1), we can obtain that

$$
\begin{aligned}
c_{1,1} & =\frac{c_{1,7} c_{8,14}}{c_{2,14}}, \quad c_{1,2}=\frac{c_{1,13} c_{4,14}}{c_{4,13}}, \quad c_{1,3}=\frac{c_{1,7} c_{8,14}}{c_{4,14}} \\
c_{1,5} & =\frac{c_{1,7} c_{8,13}}{c_{7,13}}, \quad c_{1,6}=\frac{c_{1,13} c_{8,14}}{c_{8,13}}, \quad c_{1,8}=\frac{c_{2,7} c_{8,14}}{c_{2,14}} \\
c_{1,9} & =\frac{c_{1,7} c_{2,8}}{c_{2,7}}, \quad c_{1,10}=\frac{c_{1,7} c_{8,14}}{c_{11,14}} \\
c_{1,12} & =\frac{c_{1,7} c_{2,11} c_{8,14}}{c_{1,11} c_{2,14}}, \quad c_{1,14}=\frac{c_{1,7} c_{8,14}}{c_{0,1}}
\end{aligned}
$$

Therefore from (2) we have $\mathrm{k}\left(x_{0}, \ldots, x_{14}\right)^{C_{15}}=$ $\mathrm{k}\left(c_{0,1},\left[c_{1,4}\right]_{\text {conj }},\left[c_{1,7}\right]_{\text {conj }},\left[c_{1,11}\right]_{\text {conj }}\right)$. And we can obtain the following two relations:

$$
\begin{aligned}
& c_{1,7} c_{2,8} c_{4,13}-c_{1,13} c_{4,7} c_{11,14}=0 \\
& c_{1,4} c_{2,14} c_{8,11}-c_{2,11} c_{7,13} c_{8,14}=0
\end{aligned}
$$

Put $u_{1,4}:=c_{1,4}+c_{11,14}, u_{2,8}=c_{2,8}+c_{7,13}$, then we have

$$
\begin{aligned}
c_{11,14} & =\frac{c_{1,7} c_{4,13}\left(c_{2,14} c_{8,11} u_{1,4}-c_{2,11} c_{8,14} u_{2,8}\right)}{c_{1,7} c_{2,14} c_{4,13} c_{8,11}-c_{1,13} c_{2,11} c_{4,7} c_{8,14}} \\
c_{7,13} & =-\frac{c_{2,14} c_{8,11}\left(c_{1,13} c_{4,7} u_{1,4}-c_{1,7} c_{4,13} u_{2,8}\right)}{c_{1,7} c_{2,14} c_{4,13} c_{8,11}-c_{1,13} c_{2,11} c_{4,7} c_{8,14}}
\end{aligned}
$$

This proves the assertion.
From Lemma 1 we have
$K^{C_{15}}=\mathbf{Q}\left(y_{0}, r_{1}^{\prime}, r_{2}^{\prime}, s_{1}^{\prime}, \ldots, s_{4}^{\prime}, t_{1}^{\prime}, \ldots, t_{4}^{\prime}, u_{1}, \ldots, u_{4}\right)$, where

$$
\begin{aligned}
c_{1,4}+c_{11,14}= & r_{1}^{\prime}\left(\zeta+\zeta^{4}+\zeta^{11}+\zeta^{14}\right) \\
& +r_{2}^{\prime}\left(\zeta^{2}+\zeta^{7}+\zeta^{8}+\zeta^{13}\right) \\
c_{1,7}= & s_{1}^{\prime} \zeta+s_{2}^{\prime} \zeta^{2}+s_{3}^{\prime} \zeta^{4}+s_{4}^{\prime} \zeta^{8} \\
& +t_{1}^{\prime} \zeta^{14}+t_{2}^{\prime} \zeta^{13}+t_{3}^{\prime} \zeta^{11}+t_{4}^{\prime} \zeta^{7} \\
c_{1,11}= & u_{1}\left(\zeta+\zeta^{11}\right)+u_{2}\left(\zeta^{2}+\zeta^{7}\right) \\
& +u_{3}\left(\zeta^{4}+\zeta^{14}\right)+u_{4}\left(\zeta^{8}+\zeta^{13}\right)
\end{aligned}
$$

And the actions of τ_{-1} and τ_{2} on $K^{C_{15}}$ are given by $\tau_{-1}: y_{0} \mapsto y_{0}, r_{1}^{\prime} \mapsto r_{1}^{\prime}, r_{2}^{\prime} \mapsto r_{2}^{\prime} s_{1}^{\prime} \leftrightarrow t_{1}^{\prime}$,
$s_{2}^{\prime} \leftrightarrow t_{2}^{\prime}, s_{3}^{\prime} \leftrightarrow t_{3}^{\prime}, s_{4}^{\prime} \leftrightarrow t_{4}^{\prime}, u_{1} \leftrightarrow u_{3}, u_{2} \leftrightarrow u_{4}$,
$\tau_{2}: y_{0} \mapsto y_{0}, r_{1}^{\prime} \leftrightarrow r_{2}^{\prime} s_{1}^{\prime} \mapsto s_{2}^{\prime} \mapsto s_{3}^{\prime} \mapsto s_{4}^{\prime} \mapsto s_{1}^{\prime}$,
$t_{1}^{\prime} \mapsto t_{2}^{\prime} \mapsto t_{3}^{\prime} \mapsto t_{4}^{\prime} \mapsto t_{1}^{\prime}, u_{1} \mapsto u_{2} \mapsto u_{3} \mapsto u_{4} \mapsto u_{1}$.

We also have $\tau_{4}=\tau_{2}^{2}, \tau_{11}=\tau_{-1} \tau_{4}$. Using Lemma 2, we put $r_{1}:=\operatorname{Tr}\left(r_{1}^{\prime} u_{1}\right), r_{2}:=\operatorname{Tr}\left(r_{2}^{\prime} u_{1}\right)$, $s_{i}:=$ $\operatorname{Tr}\left(s_{i}^{\prime} u_{1}\right), t_{i}:=\operatorname{Tr}\left(t_{i}^{\prime} u_{1}\right)$ for $i=1, \ldots, 4$, where Tr is the trace under the action of τ_{2}. We see that y_{0}, r_{1}, r_{2} are $\operatorname{Aff}(\mathbf{Z} / 15 \mathbf{Z})$-invariants. Hence we put $W=$ $\left(y_{0}, r_{1}, r_{2}\right)$ then we have

$$
K^{C_{15}}=\mathbf{Q}\left(W, s_{1}, \ldots, s_{4}, t_{1}, \ldots, t_{4}, u_{1}, \ldots, u_{4}\right)
$$

The τ_{-1}-action on $K^{C_{15}}$ above is given by $s_{1} \leftrightarrow t_{1}$, $s_{2} \leftrightarrow t_{2}, s_{3} \leftrightarrow t_{3}, s_{4} \leftrightarrow t_{4}, u_{1} \leftrightarrow u_{3}, u_{2} \leftrightarrow u_{4}$ and τ_{2} acts on $s_{1}, \ldots, s_{4}, t_{1}, \ldots, t_{4}$ trivially and the u_{i} 's as $u_{1} \mapsto u_{2} \mapsto u_{3} \mapsto u_{4} \mapsto u_{1}$. Therefore we can easily obtain an explicit transcendental basis of $K^{D_{15}}$, $K^{G_{15,2}^{(1)}}, K^{G_{15,2}^{(2)}}, K^{G_{15,2,2}}, K^{G_{15,4}}$ and $K^{\text {Aff(} \mathbf{Z} / 15 \mathbf{Z})}$ using the same way as in the case $n=10$.

Acknowledgements. The author is a Research Fellow of the Japan Society for the Promotion of Science and supported by Grant-in-Aid for Scientific Research for JSPS Fellows. He also would like to express his gratitude to Professor Ki-ichiro Hashimoto who gave him various suggestions during this study.

References

[1] H. Chu, S.-J. Hu and M. Kang, Noether's problem for dihedral 2-groups, Comment. Math. Helv. 79 (2004), no. 1, 147-159.
[2] S. Endô and T. Miyata, Invariants of finite abelian groups, J. Math. Soc. Japan 25 (1973), 7-26.
[3] K. Hashimoto and A. Hoshi, Families of cyclic polynomials obtained from geometric generalization of Gaussian period relations, Math. Comp. (To appear).
[4] K. Hashimoto and A. Hoshi, Geometric generalization of Gaussian period relations with application to Noether's problem for meta-cyclic groups, Tokyo J. Math. (To appear).
[5] K. Hashimoto, A. Hoshi and Y. Rikuna, Noether's problem and \mathbf{Q}-generic polynomials for the normalizer of the 8 -cycle in S_{8}, (2004). (Preprint).
[6] A. Hoshi, Noether's problem for Frobenius groups of degree 7 and 11, (2004). (Preprint).
[7] C. U. Jensen, A. Ledet and N. Yui, Generic polynomials, Cambridge Univ. Press, Cambridge, 2002.
[8] K. Masuda, On a problem of Chevalley, Nagoya Math. J. 8 (1955), 59-63.
[9] K. Masuda, Application of the theory of the group of classes of projective modules to the existance problem of independent parameters of invariant, J. Math. Soc. Japan 20 (1968), 223-232.
[10] T. Miyata, Invariants of certain groups. I, Nagoya Math. J. 41 (1971), 69-73.
[11] E. Noether, Rationale Funktionenkörper, Jahrbericht Deutsch. Math.-Verein. 22 (1913), 316-319.
[12] E. Noether, Gleichungen mit vorgeschriebener Gruppe, Math. Ann. 78 (1918), 221-229.
[13] A. D. Thomas and G. V. Wood, Group tables, Shiva mathematics series, 2, Shiva, Nantwich, 1980.

[^0]: 2000 Mathematics Subject Classification. Primary 12F12; Secondary 11R32, 12F10.

