
No. 2] Proc. Japan Acad., 80, Ser. A (2004) 9
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Abstract: Let p and q be distinct primes such that p ≡ q (mod 4) and consider the
quadratic field K = Q(

√
pq). In this paper, we shall investigate the class group and determine the

exact power of 2 dividing the class number of K using the theory of ideals and a theorem on the
solvability of ax2 + by2 = z2.
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1. Preliminaries. Let p and q be distinct
primes congruent modulo 4 and K be the quadratic
field Q(

√
pq), with integer ring OK . Let H and H+

denote the ordinary ideal class group and the “nar-
row” ideal class group of K, with class numbers h

and h+, respectively. The class numbers h and h+

are equal whenever the fundamental unit ε of K has
norm N(ε) < 0. On the other hand, if N(ε) > 0 then
2h = h+.

In [5], Scholz used class field theory to look at
the structure of the class group of K and proved the
following theorem.

Theorem 1.1. Let p and q be distinct primes
with p ≡ q (mod 4) and h+, h (in the narrow
and wide sense, respectively) of the quadratic field
Q(

√
pq). Then:

a) If p ≡ q ≡ 3 (mod 4) then h+ ≡ 2 (mod 4) and
h is odd.

b) If p ≡ q ≡ 1 (mod 4) and (p/q) = (q/p) = −1
then h+ = h and h ≡ 2 (mod 4).

c) Let p ≡ q ≡ 1 (mod 4) and (p/q) = (q/p) = 1.
1) If (p/q)4 = −(q/p)4 then h+ ≡ 4 (mod 8)

and h ≡ 2 (mod 4).
2) If (p/q)4 = (q/p)4 = −1 then h+ = h and

h ≡ 4 (mod 8).
3) If (p/q)4 =(q/p)4 =1 then h+ ≡ 0 (mod 8).

Furthermore, h ≡ 0 (mod 8) if N(ε) = −1 and h ≡
0 (mod 4) if N(ε) = 1.

In this paper, we shall give an elementary proof
of Scholz’s theorem using ideal theory and Legen-
dre’s theorem on the solvability of the Diophantine
equation ax2 + by2 = z2.
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In the general sense, the problem is that of de-
termining the Sylow 2-group of H+. The idea is to
find sufficient and necessary conditions under which
a given ideal is equivalent to the square of some ideal.
Let (H+)2 be the set of squares among the classes of
H+. If ordC = 2 and C ∈ (H+)2 then C = C2

1 for
some C1∈ H+, with ordC1 = 4. Now if C1∈ (H+)2,
then C = C4

2 for some C2 ∈ H+ and ordC2 = 8. We
continue this process and find the smallest i such
that Ci �∈ (H+)2. Then ordCi = 2i+1. The narrow
class group H+ has a cyclic subgroup of order 2i+1

and the class number h+ is divisible by 2i+1.
Let m and n be non-zero rational integers.

Whenever n is a square modulo m, we write nRm.
The following classical result is due to Legendre. An
interesting proof by induction can be found in [1].

Lemma 1.2. If a and b are positive square-
free integers, then the equation ax2 + by2 = z2 has
non-trivial integer solutions x, y and z if and only if
aRb, bRa and (−ab/(a, b)2)R(a, b).

Lemma 1.3. Let A be an ideal. Then A ∼=
B2 for some ideal B if and only if there is a non-
zero rational integer z and α ∈ A such that z2 =
(N(α)/NA), where NA is the norm of A, i.e., the
number of elements in OK/A (c.f. [4]).

Let A be a primitive ideal with norm NA = a =
kn2, with k square-free. A has an integral basis of
the form A = [a, (b +

√
d/2)] where d = pq is the

discriminant of K and a | N(b +
√

d/2). Therefore
there is some rational integer c such that d = b2 −
4ac.

To show that A ∼= B2 for some ideal B, we need
to find z ∈ Z and α = ax + (b +

√
d/2)y such that

z2 = (N(α)/NA). This is equivalent to
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N(α) = az2(
ax +

b +
√

d

2
y

)(
ax +

b −√
d

2
y

)
= az2

(2ax + by)2 = k(2nz)2 + dy2.

Putting x = nz̄−bnȳ, y = 2anȳ and z = ax̄, the
problem reduces to finding whether there are integers
x̄, ȳ and z̄ such that kx̄2 + dȳ2 = z̄2. Using the
previous lemmas, we have

Lemma 1.4. Let A be an ideal and NA =
kn2, with k square-free. The A ∼= B2 for some ideal
B if and only if kRd, dRk and (−kd/(k, d)2)R(k, d).

2. Proof of theorem. We begin with a few
standard definitions and facts. Let σ be the non-
trivial element of Gal(K/Q). An ambiguous ideal is
an ideal A such that A = Aσ . The only primitive
ambiguous ideals are the unit ideal and those whose
prime factors divide the discriminant of K. An am-
biguous ideal class is a class C such that C = Cσ.

The primes p and q ramify in K, hence there are
prime ideals P and Q such that (p) = P 2 and (q) =
Q2. The only primitive ambiguous ideals are the unit
ideal I = Ok, P , Q and PQ = (

√
d). K has two am-

biguous ideal classes, each containing two primitive
ambiguous ideals. These ideals can be distributed
among the two classes in three possible ways:

P ∼= Q �∼= I ∼= (
√

d),
P ∼= I �∼= Q ∼= (

√
d),

P ∼= (
√

d) �∼= Q ∼= I.

Let the integral basis of P be [p, (p +
√

d/2)] and
apply Lemma 1.4. Then P ∼= P 2

1 for some ideal P1

if and only if (p/q) = (−q/p) = 1.
Now we apply Lemma 1.4 to (

√
d) =

[d, (d +
√

d/2)]. There is an ideal D1 such that
(
√

d) ∼= D2
1 if and only if −1Rd or −1Rpq. The

Chinese Remainder Theorem and the quadratic reci-
procity law reduce this condition to p ≡ q ≡ 1
(mod 4).

We treat the following cases separately:
a) If p ≡ q ≡ 3 (mod 4), then without loss of

generality, assume (p/q) = 1. Then(
p

q

)
= −

(
q

p

)
=
(−q

p

)
= 1

⇒ P ∼= P 2
1
∼= I

⇒ P ∼= I �∼= Q ∼= (
√

d)

⇒ N(ε) = 1, 2‖h+ and h is odd.

b) If p ≡ q ≡ 1 (mod 4) and (p/q) = (q/p) =
−1 we get P ∼= Q �∼= I ∼= (

√
d) and N(ε) = −1 and

2‖h+ = h.
c) If p ≡ q ≡ 1 (mod 4) and (p/q) = (q/p) = 1

then each of the four ambiguous ideals are equivalent
to squares. In order to find out how they are dis-
tributed into the two ambiguous classes, we need to
know the conditions under which each ideal is equiv-
alent (in the narrow sense) to the fourth power of
some ideal. These are given by the following lemma.

Lemma 2.1. There is an ideal P2 such that
P ≡ P 4

2 if and only if q is a biquadratic residue mod-
ulo p. Similarly, Q ≡ Q4

2 for some ideal Q2 if and
only if p is a biquadratic residue modulo q.

Proof. Consider the ideal P1 where P ∼= P 2
1 .

We can assume that P1 is primitive and has integral
basis P1 = [ap, (bp +

√
d/2)], where NP1 = ap =∏

pmi

i divides the norm of (bp +
√

d/2) and (ap, d) =
1. All the prime divisors pi of ap split in Ok. Hence,
for odd prime divisors pj , (d/pj) = 1. If ap is even
then (2/d) = 1.

From Lemma 1.4, P1
∼= P 2

2 for some ideal P2 if
and only if apRd, dRap and (−apd/(ap, d)2)R(ap, d).
The last two conditions are trivially satisfied because
ap | N(bp +

√
d/2) and (ap, d) = 1.

Writing ap = 2ma′
p, we have(

ap

p

)(
ap

q

)
=
(

2
d

)m (a′
p

d

)

=
(

a′
p

d

)
=
(

d

a′
p

)
=

(
b2
p

a′
p

)
= 1.

Thus (ap/p) = (ap/q). By the Chinese Remainder
Theorem, we have P1

∼= P 2
2 if and only if (ap/p) = 1.

Let (p/q)4 be the biquadratic residue charac-
ter, which takes on values 1 or −1, according as
p is a biquadratic residue or a biquadratic non-
residue modulo q. Since P ∼= P 2

1 , there exists α =
px + (p +

√
d/2)y ∈ P such that (x, y) = 1 and

(Nα/NP ) = a2
p. Thus 4a2

p ≡ −qy2 (mod p).
From this follows(

2
p

)(
ap

p

)
≡ (2ap)(p−1/2)

≡ (4a2
p)

(p−1/4)

≡ (−qy2)(p−1/4) (mod p)

=
(−1

p

)
4

(
q

p

)
4

(
y

p

)
.
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But (2/p) = (−1/p)4, so to prove the lemma, it suf-
fices that we show that (y/p) = 1.

Let y = 2ky1, where y1 is odd. Then(
y

p

)
=
(

2
p

)k (
y1

p

)

=
(

2
p

)k (
p

y1

)
.

Since 4a2
p ≡ p(2x + y)2 (mod y1), we get

1 =

(
4a2

p

y1

)

=
(

p

y1

)(
2x + y

y1

)2

,

and so (p/y1) = 1 and (y/p) = (2/p)k. If y is odd
then (y/p) = 1. Let y be even and consider the
equation a2

p = px2+pxy+(p − q/4)y2. Since (x, y) =
1, x and ap are odd, and thus pxy ≡ 0 (mod 4). It
follows that y ≡ 0 (mod 4) and k ≥ 2.

If p ≡ 1 (mod 8) then (2/p) = 1 and (y/p) =
1. If p ≡ 5 (mod 8), we look at a2

p = px2 + pxy +
(p − q/4)y2 modulo 8. Since x and ap are odd, we
get 1 ≡ 5 + 5xy (mod 8) and k = 2.

Finally we consider the three subcases of c):
c-2) If (p/q)4 = (q/p)4 = −1 then P �∼= P 4

2 ; Q �∼= Q4
2

⇒ P ≡ Q �∼= (
√

d) ∼= I

⇒ N(ε) = −1, 4‖h+ = h.

c-1) If (p/q)4 = −(q/p)4 = 1 then P �∼= P 4
2 ; Q ∼= Q4

2

⇒ P ∼= (
√

d) �∼= Q ∼= I

⇒ N(ε) = 1, 4‖h+ = 2h, 2‖h.

If (p/q)4 = −(q/p)4 = −1 then P ∼= P 4
2 ; Q �∼= Q4

2

⇒ P ∼= I �∼= Q ∼= (
√

d)
⇒ N(ε) = 1, 4‖h+ = 2h, 2‖h.

c-3) If (p/q)4 = (q/p)4 = 1 then all four ideals are
fourth powers. The distribution of ideals therefore
takes into account the conditions under which an
ideal is an eight power. In this case, 8|h+. Therefore
8|h if N(ε) = −1, and 4|h if N(ε) = 1.

The proof is complete.
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