On WKB analysis of higher order Painlevé equations with a large parameter

By Takahiro Kawai and Yoshitsugu Takei
Research Institute for Mathematical Sciences, Kyoto University
Kita-Shirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502
(Communicated by Shigefumi Mori, M. J. A., May 12, 2004)

Abstract

We announce a generalization of the reduction theorem for 0-parameter solutions of the traditional (i.e., second order) Painlevé equations with a large parameter to those of some higher order Painlevé equations, i.e., each member of the Painlevé hierarchies $\left(P_{J}\right)(J=\mathrm{I}$, II-1 and II-2) discussed in [KKNT]. Thus the scope of applicability of the reduction theorem ([KT1, KT2]) has been substantially enlarged; only six equations were covered by our previous result, while the result reported here applies to infinitely many equations.

Key words: Painlevé transcendent; Painlevé hierarchy; turning point; Lax pair.
0. Introduction. The purpose of this article is to report that a 0-parameter solution of a higher order Painlevé equation $\left(P_{J}\right)_{m}(J=\mathrm{I}$, II-1, II-2; $m=1,2, \ldots$) can be formally reduced to a 0 -parameter solution of $\left(P_{\mathrm{I}}\right)_{1}$, i.e., the traditional Painlevé equation $\left(P_{\mathrm{I}}\right)$ with a large parameter, near its turning point of the first kind (in the sense of [KKNT]). This is a substantial generalization of our earlier result ([KT2]; its core part was announced in [KT1]), which is concerned with the traditional (i.e., second order) Painlevé equations; thus it covers only six equations $\left(P_{J}\right)(J=\mathrm{I}, \mathrm{II}, \ldots, \mathrm{VI})$, while the result announced in this article applies to infinitely many equations, i.e., each member of the Painlevé hierarchy $\left(P_{J}\right)_{m}(J=\mathrm{I}, \mathrm{II}-1, \mathrm{II}-2 ; m=1,2, \ldots)$ with a large parameter η. Here and in what follows we use the same notions and notations as in [KKNT]. In order to give the reader some idea of the "higher order Painlevé equations" discussed here, we recall the definition of $\left(P_{\mathrm{I}}\right)_{m}$ together with the underlying Lax pair $\left(L_{\mathrm{I}}\right)_{m}$, i.e., a system of linear differential equations whose compatibility condition is described by $\left(P_{\mathrm{I}}\right)_{m}$. See [KKNT] for $\left(P_{J}\right)_{m}$ and $\left(L_{J}\right)_{m}(J=\mathrm{II}-1$, II-2). See also [S], [GJP] and [GP] for the equations without the large parameter.

Definition 0.1. The m-th member of $P_{\mathrm{I}^{-}}$ hierarchy with a large parameter η is the following system of non-linear differential equations:

[^0]\[

\left(P_{\mathrm{I}}\right)_{m}: $$
\begin{cases}\frac{d u_{j}}{d t}=2 \eta v_{j} & (j=1, \ldots, m) \tag{0.1}\\ \frac{d v_{j}}{d t}=2 \eta\left(u_{j+1}+\right. & \left.u_{1} u_{j}+w_{j}\right) \\ u_{m+1}=0, & (j=1, \ldots, m)\end{cases}
$$
\]

where w_{j} is a polynomial of u_{k} and $v_{l}(1 \leq k, l \leq j)$ that is determined by the following recursive relation:

$$
\begin{align*}
w_{j}= & \frac{1}{2}\left(\sum_{k=1}^{j} u_{k} u_{j+1-k}\right)+\sum_{k=1}^{j-1} u_{k} w_{j-k} \tag{0.2}\\
& -\frac{1}{2}\left(\sum_{k=1}^{j-1} v_{k} v_{j-k}\right)+c_{j}+\delta_{j m} t \quad(j=1, \ldots, m)
\end{align*}
$$

Here c_{j} is a constant and $\delta_{j, m}$ stands for Kronecker's delta.

Remark 0.1. The system $\left(P_{\mathrm{I}}\right)_{m}$ is seen to be equivalent to a single $2 m$-th order differential equation. For example, $\left(P_{\mathrm{I}}\right)_{1}$ is equivalent to

$$
\begin{equation*}
u_{1}^{\prime \prime}=\eta^{2}\left(6 u_{1}^{2}+4 c_{1}+4 t\right) \tag{0.3}
\end{equation*}
$$

the traditional Painlevé equation $\left(P_{\mathrm{I}}\right)$, and $\left(P_{\mathrm{I}}\right)_{2}$ is equivalent to the following fourth order equation:

$$
\begin{align*}
u_{1}^{(4)}= & \eta^{2}\left(20 u_{1} u_{1}^{\prime \prime}+10\left(u_{1}^{\prime}\right)^{2}\right) \tag{0.4}\\
& +\eta^{4}\left(-40 u_{1}^{3}-16 c_{1} u_{1}+16 c_{2}+16 t\right)
\end{align*}
$$

The underlying Lax pair $\left(L_{\mathrm{I}}\right)_{m}$ of $\left(P_{\mathrm{I}}\right)_{m}$ is given by the following:

$$
\left(L_{\mathrm{I}}\right)_{m}:\left\{\begin{array}{l}
\left(\frac{\partial}{\partial x}-\eta A\right) \vec{\psi}=0 \tag{0.5}\\
\left(\frac{\partial}{\partial t}-\eta B\right) \vec{\psi}=0
\end{array}\right.
$$

where $\vec{\psi}={ }^{t}\left(\psi_{1}, \psi_{2}\right)$,

$$
A=\left(\begin{array}{cc}
V(x) / 2 & U(x) \tag{0.6}\\
\left(2 x^{m+1}-x U(x)+2 W(x)\right) / 4 & -V(x)
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{cc}
0 & 2 \tag{0.7}\\
u_{1}+x / 2 & 0
\end{array}\right)
$$

with

$$
\begin{align*}
& U(x)=x^{m}-\sum_{j=1}^{m} u_{j} x^{m-j} \tag{0.8}\\
& V(x)=\sum_{j=1}^{m} v_{j} x^{m-j} \tag{0.9}
\end{align*}
$$

and

$$
\begin{equation*}
W(x)=\sum_{j=1}^{m} w_{j} x^{m-j} \tag{0.10}
\end{equation*}
$$

See [KKNT, Proposition 1.1.1] for the proof of the fact that $\left(P_{\mathrm{I}}\right)_{m}$ is the compatibility condition for $\left(L_{\mathrm{I}}\right)_{m}$.

As in the case of the traditional Painlevé equations (cf. [KT2]), we can construct the so-called 0parameter solution $\left(\hat{u}_{j}, \hat{v}_{j}\right)$ of $\left(P_{\mathrm{I}}\right)_{m}$ of the following form:

$$
\begin{align*}
& \hat{u}_{j}(t, \eta)=\hat{u}_{j, 0}(t)+\eta^{-1} \hat{u}_{j, 1}(t)+\cdots \tag{0.11}\\
& \hat{v}_{j}(t, \eta)=\hat{v}_{j, 0}(t)+\eta^{-1} \hat{v}_{j, 1}(t)+\cdots \tag{0.12}
\end{align*}
$$

In what follows we always substitute the 0 -parameter solution into the coefficients of $\left(L_{\mathrm{I}}\right)_{m}$. Accordingly the matrices A and B are also expanded in powers of η^{-1}; their top degree parts are respectively denoted by A_{0} and B_{0}.

In studying the structure of 0-parameter solutions, we can readily find the structure of \hat{v}_{j} from that of \hat{u}_{j}, thanks to (0.1.a). Hence we concentrate our attention to \hat{u}_{j} 's, or rather the solutions
(0.13)

$$
b_{j}(t, \eta)=b_{j, 0}(t)+\eta^{-1} b_{j, 1}(t)+\cdots \quad(1 \leq j \leq m)
$$

of the equation $U\left(b_{j}(t, \eta)\right)=0$, that is,

$$
\begin{equation*}
b_{j}(t, \eta)^{m}-\sum_{j=1}^{m} \hat{u}_{j}(t, \eta) b_{j}(t, \eta)^{m-j}=0 \tag{0.14}
\end{equation*}
$$

We note that $\left\{b_{j}\right\}_{j=1, \ldots, m}$ appear as a straightforward counterpart of the traditional Painlevé transcendents in the original formulation of Shimomura ([S]) of higher order Painlevé equations from the viewpoint of the Garnier system. The passage from $\left\{b_{j}\right\}$ to their elementary symmetric polynomials $\left\{u_{j}\right\}$ seems to ameliorate the global behavior of functions in question, which is not our immediate concern here (cf. [S]).

Now, our goal (Theorem 3.1 below) is to relate $b_{j}(t, \eta)$ with a 0 -parameter solution of the traditional Painlevé-I equation through a formal transformation. In constructing the required transformation, we first rewrite $\left(L_{J}\right)_{m}(J=\mathrm{I}$, II-1, II-2) as a pair of a Schrödinger equation $\left(S L_{J}\right)_{m}$ and its deformation equation $\left(D_{J}\right)_{m}$ (Section 1) and then analyze solutions of the Riccati equation associated with $\left(S L_{J}\right)_{m}$ near $x=b_{j, 0}(t)$, the top order part of $b_{j}(t, \eta)$ (Section 2). Making full use of the results in Section 2, we construct an appropriate semi-global transformation that brings $\left(S L_{J}\right)_{m}$ to $\left(S L_{I}\right)_{1}$ and the constructed transformation is used to reduce b_{j} to a 0 -parameter solution of $\left(P_{\mathrm{I}}\right)_{1}$.

The details of this article shall be published elsewhere.

1. Derivation of a Schrödinger equation $\left(S L_{J}\right)_{m}$ and its deformation equation $\left(D_{J}\right)_{m}$. If we let ψ denote

$$
\begin{equation*}
\exp \left(-\int^{x} \frac{U_{x}}{2 U} d x\right) \psi_{1}=\frac{1}{\sqrt{U}} \psi_{1} \tag{1.1}
\end{equation*}
$$

for the first component ψ_{1} of the unknown vector $\vec{\psi}$ of (0.5.a), we find ψ satisfies the following Schrödinger equation $\left(S L_{\mathrm{I}}\right)_{m}$:
$\left(S L_{\mathrm{I}}\right)_{m}$

$$
\frac{\partial^{2} \psi}{\partial x^{2}}=\eta^{2} Q_{(\mathrm{I}, m)} \psi
$$

where
(1.2)

$$
\begin{aligned}
Q_{(\mathrm{I}, m)}= & \frac{1}{4}\left(2 x^{m+1} U-x U^{2}+2 U W\right)+\frac{1}{4} V^{2} \\
& -\frac{\eta^{-1} V U_{x}}{2 U}+\frac{\eta^{-1} V_{x}}{2}+\frac{3 \eta^{-2} U_{x}^{2}}{4 U^{2}}-\frac{\eta^{-2} U_{x x}}{2 U}
\end{aligned}
$$

Making use of (0.5.b), we can find its deformation equation $\left(D_{\mathrm{I}}\right)_{m}$, an equation compatible with
$\left(S L_{\mathrm{I}}\right)_{m}:$
$\left(D_{\mathrm{I}}\right)_{m}$

$$
\frac{\partial \psi}{\partial t}=\mathfrak{a}_{(\mathrm{I}, m)} \frac{\partial \psi}{\partial x}-\frac{1}{2} \frac{\partial \mathfrak{a}_{(\mathrm{I}, m)}}{\partial x} \psi,
$$

where

$$
\begin{equation*}
\mathfrak{a}_{(\mathrm{I}, m)}=\frac{2}{U} . \tag{1.3}
\end{equation*}
$$

Now we note that $Q_{(\mathrm{I}, m), 0}$, the highest degree term in η of $Q_{(\mathrm{I}, m)}$, has the form
(1.4) $\frac{1}{4}\left(x+2 \hat{u}_{1,0}\right) U_{0}(x)^{2}$

$$
=\frac{1}{4}\left(x+2 \hat{u}_{1,0}\right)\left(x^{m}-\sum_{j=1}^{m} \hat{u}_{j, 0} x^{m-j}\right)^{2} .
$$

(See [KKNT, §2.1] for the details.) Hence $x=$ $b_{j, 0}(1 \leq j \leq m)$ is a double turning point of $\left(S L_{\mathrm{I}}\right)_{m}$. Similar observations are made also for $\left(S L_{J}\right)_{m}(J=\mathrm{II}-1$ and II-2). Thus, it is natural to expect that the setting of [KT2] may be also applicable to $\left(S L_{J}\right)_{m}(J=\mathrm{I}$, II-1, II-2), and this expectation is really validated as is discussed below. For the reference we note that the deformation equation $\left(D_{J}\right)_{m}(J=\mathrm{II}-1, \mathrm{II}-2)$ for $\psi=x^{1 / 2} T_{m}^{-1 / 2} \psi_{1}$ (in the case of $\left.\left(L_{\mathrm{II}-1}\right)_{m}\right)$ and $\psi=T_{m}^{-1 / 2} \psi_{1}$ (in the case of $\left(L_{\mathrm{II}-2}\right)_{m}$; for the sake of simplicity we assume $c_{j}=$ $0(1 \leq j \leq m-1)$ in (1.3.9) of [KKNT]. To avoid some degeneracy we also assume $c \neq 0$ in (1.2.1) (resp., $\delta \neq 0$ in (1.3.1)) of $[\mathrm{KKNT}]$) is given respectively with

$$
\begin{equation*}
\mathfrak{a}_{(\mathrm{II}-1, m)}=\frac{2 g x}{T_{m}} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{a}_{(\mathrm{II}-2, m)}=\frac{g}{2 T_{m}} \tag{1.6}
\end{equation*}
$$

where g is a non-zero constant and T_{m} is a polynomial of degree m in x whose coefficients are given in terms of (0-parameter) solutions of $\left(P_{J}\right)_{m}$.
2. Regularity of $S_{\text {odd }}$ near $x=b_{j, 0}(t)$.

In this section we omit the suffix (J, m) of $Q_{(J, m)}$ and $\mathfrak{a}_{(J, m)}$. Let $S^{ \pm}$respectively denote the solution of the Riccati equation associated with $\left(S L_{J}\right)_{m}$, i.e.,

$$
\begin{equation*}
\left(S^{ \pm}\right)^{2}+\frac{\partial S^{ \pm}}{\partial x}=\eta^{2} Q \tag{2.1}
\end{equation*}
$$

that begins with $\pm \eta \sqrt{Q}$. Then $S_{\text {odd }}$ is, by definition,

$$
\begin{equation*}
S_{\mathrm{odd}}=\frac{1}{2}\left(S^{+}-S^{-}\right) \tag{2.2}
\end{equation*}
$$

We note that this definition of $S_{\text {odd }}$ is different from that used in [KT2]; one important point is that $S_{\text {odd }}$
thus defined may contain a term whose degree in η is even. Although we do not discuss the details here, $S_{\text {odd }}$ thus defined is free from even degree terms for $J=\mathrm{I}$, just like $S_{\text {odd }}$ in [KT2], but not for $J=\mathrm{II}-1$ or II-2. As is shown in [AKT, §2], we can verify

$$
\begin{equation*}
\frac{\partial S_{\mathrm{odd}}}{\partial t}=\frac{\partial}{\partial x}\left(\mathfrak{a} S_{\mathrm{odd}}\right) \tag{2.3}
\end{equation*}
$$

for $S_{\text {odd }}$ thus defined. Using (2.3), we can prove the following

Theorem 2.1. The series $S_{\text {odd }}$ and $\mathfrak{a} S_{\text {odd }}$ are holomorphic on a neighborhood of $x=b_{j, 0}(t)(1 \leq$ $j \leq m)$ in the sense that each of their coefficients as formal power series in η^{-1} is holomorphic on a neighborhood of $x=b_{j, 0}(t)$.
3. Reduction of $b_{j}(t, \eta)(j=1, \cdots, m)$ to a 0-parameter solution of $\left(\boldsymbol{P}_{\mathbf{I}}\right)_{\mathbf{1}}$. Let $t=\tau$ be a turning point of the first kind of $\left(P_{J}\right)_{m}(J=\mathrm{I}$, II-1, II-2) in the sense of [KKNT]. (We note that every turning point is of the first kind if $m=1$, i.e., for the traditional Painlevé equations.) Let us further assume that τ is simple in the sense of [AKKT] (with using a local parameter of the Riemann surface \mathcal{R} of the 0 -parameter solution as independent variable. Note that, as is explained in [KKNT] and [NT], the Stokes geometry of $\left(P_{J}\right)_{m}$ lies on \mathcal{R} and that a turning point of the first kind is in general a square-root type branch point of \mathcal{R}.) Then there exist a double turning point $b_{j, 0}(t)$ and a simple turning point $a(t)$ of $\left(S L_{J}\right)_{m}$ which merge at τ, and there exists an analytic function $\nu_{j}(t)$ for which

$$
\begin{equation*}
\int_{\tau}^{t} \nu_{j}(s) d s=2 \int_{a(t)}^{b_{j, 0}(t)} \sqrt{Q_{(J, m), 0}(x, t)} d x \tag{3.1}
\end{equation*}
$$

holds. (See [KKNT, §2] for the proof.) Note that a Stokes curve of $\left(P_{J}\right)_{m}$ that emanates from τ is, by definition, given by

$$
\begin{equation*}
\operatorname{Im} \int_{\tau}^{t} \nu_{j}(s) d s=0 \tag{3.2}
\end{equation*}
$$

It follows from (3.1) that

$$
\begin{equation*}
\operatorname{Im} \int_{a(t)}^{b_{j, 0}(t)} \sqrt{Q_{(J, m), 0}(x, t)} d x=0 \tag{3.3}
\end{equation*}
$$

holds if t lies in the Stokes curve of $\left(P_{J}\right)_{m}$. Otherwise stated, if t lies in the Stokes curve of $\left(P_{J}\right)_{m}$, the double turning point $b_{j, 0}(t)$ and a simple turning point $a(t)$ of $\left(S L_{J}\right)_{m}$ are connected by a Stokes segment γ. Using Theorem 2.1, we can prove the following Proposition 3.1 in this geometrical setting:

Proposition 3.1. Let τ be a simple turning point of the first kind of $\left(P_{J}\right)_{m}(J=\mathrm{I}$, II-1, II-2), and let $\sigma(\neq \tau)$ be a point that is sufficiently close to τ and that lies in a Stokes curve of $\left(P_{J}\right)_{m}$ which emanates from τ. Then there exist a neighborhood Ω of the above mentioned Stokes segment γ, a neighborhood ω of σ and holomorphic functions $\tilde{x}_{j}(x, t)$ $(j=0,1,2, \cdots)$ on $\Omega \times \omega$ and $\tilde{t}_{j}(t)(j=0,1,2, \cdots)$ on ω so that the following relations may hold:
(i) The function $\tilde{t}_{0}(t)$ satisfies

$$
\begin{equation*}
\int_{\tau}^{t} \nu_{j}(s) d s=\left.\int_{0}^{\tilde{t}} \sqrt{12 \lambda_{0}(\tilde{s})} d \tilde{s}\right|_{\tilde{t}=t_{0}(t)} \tag{3.4}
\end{equation*}
$$

where $\lambda_{0}=\sqrt{-\tilde{s} / 6}$, and, in particular, $d \tilde{t}_{0} / d t \neq 0$ holds on ω, if ω is chosen sufficiently small.
(ii) $\tilde{x}_{0}\left(b_{j, 0}(t), t\right)=\lambda_{0}\left(\tilde{t}_{0}(t)\right)$ and $\tilde{x}_{0}(a(t), t)=$ $-2 \lambda_{0}\left(\tilde{t}_{0}(t)\right)$.
(iii) $\partial \tilde{x}_{0} / \partial x \neq 0$ on $\Omega \times \omega$.
(iv) Letting $\tilde{x}(x, t, \eta)$ and $\tilde{t}(t, \eta)$ respectively denote $\sum_{j \geq 0} \tilde{x}_{j}(x, t) \eta^{-j}$ and $\sum_{j \geq 0} \tilde{t}_{j}(t) \eta^{-j}$, we find the following relation:

$$
\begin{align*}
Q_{(J, m)}(x, t, \eta)= & \left(\frac{\partial \tilde{x}}{\partial x}\right)^{2} \tilde{Q}(\tilde{x}(x, t, \eta), \tilde{t}(t, \eta), \eta) \tag{3.5}\\
& -\frac{1}{2} \eta^{-2}\{\tilde{x}(x, t, \eta) ; x\}
\end{align*}
$$

where $\{\tilde{x} ; x\}$ denotes the Schwarzian derivative and $\tilde{Q}(\tilde{x}, \tilde{t})$ is the potential of the Schrödinger equation $\left(S L_{\mathrm{I}}\right)$ in [KT2], i.e.,

$$
\begin{align*}
\tilde{Q}(\tilde{x}, \tilde{t})= & 4 \tilde{x}^{3}+2 \tilde{t} \tilde{x}+\nu_{\mathrm{I}}^{2}-4 \lambda_{\mathrm{I}}^{3}-2 \tilde{t} \lambda_{\mathrm{I}} \tag{3.6}\\
& -\eta^{-1} \frac{\nu_{\mathrm{I}}}{\tilde{x}-\lambda_{\mathrm{I}}}+\eta^{-2} \frac{3}{4\left(\tilde{x}-\lambda_{\mathrm{I}}\right)^{2}}
\end{align*}
$$

with
$\lambda_{\mathrm{I}}(\tilde{t}, \eta)$ being a 0-parameter solution of $\left(P_{\mathrm{I}}\right)$,
i.e., $\lambda_{\mathrm{I}}^{\prime \prime}=\eta^{2}\left(6 \lambda_{\mathrm{I}}^{2}+\tilde{t}\right)$, and ν_{I} being $\eta^{-1} d \lambda_{\mathrm{I}} / d \tilde{t}$.

Using the transformations $\tilde{x}(x, t, \eta)$ and $\tilde{t}(t, \eta)$ constructed above, we can show

$$
\begin{equation*}
S_{(J, m), \text { odd }}(x, t)=\left(\frac{\partial \tilde{x}}{\partial x}\right) S_{\mathrm{I}, \text { odd }}(\tilde{x}(x, t, \eta), \tilde{t}(t, \eta), \eta) \tag{3.8}
\end{equation*}
$$

This relation and Theorem 2.1 entail the following
Theorem 3.1. In the situation of Proposition 3.1, we have

$$
\begin{equation*}
\left.\tilde{x}(x, t, \eta)\right|_{x=b_{j}(t, \eta)}=\lambda_{\mathrm{I}}(\tilde{t}(t, \eta), \eta) \tag{3.9}
\end{equation*}
$$

Acknowledgment. The research of the authors is supported in part by JSPS Grant-in-Aid No. 1434042.

References

[AKKT] Aoki, T., Kawai, T., Koike, T., and Takei, Y.: On the exact WKB analysis of microdifferential operators of WKB type. RIMS Preprint Series No. 1429 (2003).
[AKT] Aoki, T., Kawai, T., and Takei, Y.: WKB analysis of Painlevé transcendents with a large parameter. II. Structure of Solutions of Differential Equations, World Sci. Publishing, Singapore, pp. 1-49 (1996).
[GJP] Gordoa, P. R., Joshi, N., and Pickering, A.: On a generalized $2+1$ dispersive water wave hierarchy. Publ. Res. Inst. Math. Sci., 37, 327-347 (2001).
[GP] Gordoa, P. R., and Pickering, A.: Nonisospectral scattering problems: A key to integrable hierarchies. J. Math. Phys., 40, 5749-5786 (1999).
[KKNT] Kawai, T., Koike, T., Nishikawa, Y., and Takei, Y.: On the Stokes geometry of higher order Painlevé equations. RIMS Preprint Series No. 1443 (2004).
[KT1] Kawai, T., and Takei, Y.: On the structure of Painlevé transcendents with a large parameter. Proc. Japan Acad., 69A, 224-229 (1993).
[KT2] Kawai, T., and Takei, Y.: WKB analysis of Painlevé transcendents with a large parameter. I. Adv. Math., 118, 1-33 (1996).
[NT] Nishikawa, Y., and Takei, Y.: On the structure of the Riemann surface in the Painlevé hierarchies. (In preparation).
[S] Shimomura, S.: Painlevé property of a degenerate Garnier system of (9/2)-type and of a certain fourth order non-linear ordinary differential equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 29, 1-17 (2000).

[^0]: 2000 Mathematics Subject Classification. Primary 34E20, 34M55; Secondary 33E17, 34M40.

