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Abstract:

A simple proof of the validity of Cornacchia’s algorithm for solving the dio-

phantine equation x2 + dy?> = m is presented. Furthermore, the special case d = 1 is solved

completely.
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In 1908, G. Cornacchia gave an algorithm for
solving the diophantine equation 22 4 dy? = 4p, for
p prime (cf. [1]). The same algorithm can be used to
solve the diophantine equation

(1) 22 +dy =m

where 1 < d < m, m may not be prime. The algo-
rithm is briefly described as follows:
1. Put 7o = m and r# = —d (mod m), where 0 <

r1 < (m/2).

2. Using Euclidean algorithm, compute 7,42 = 7;

(mod 7;41) recursively until we arrive at 7 <

m.

3. If (m — r}/d) is a square integer, say s?, we get

the solution (rg, s).

A proof of the validity of this algorithm re-
lying on Diophantine Approximation was given by
F. Morain and J.-L. Nicolas (cf. [2]). In this paper,
we give a simpler proof. Moreover, we claim that if
ro = m, 7 = —1 (mod m), 1 < r; < (m/2), then
m=r{+rp ., when ri_; >m > r{.

1. A simple proof. Let d and m be integers
such that 1 < d < m.

Lemma 1. If (zo,y0) is a primitive solution
of (1), then there exists an integer t, 0 <t <m, t* =
—d (mod m) such that (zo,yo) € (M, 0), (¢t,1))z.

Proof.  Clearly, ged(yo, m) = 1. Choose t, 0 <
t < m such that yot = z¢ (mod m). We have
0 =23 +dy2 = y3(t> + d) (mod m). Thus, t? =
—d (mod m). Also, for some integer I, (zo,y0) =
I(m,0) 4+ yo(t,1) € ((m,0), (¢,1))z. Ul
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Define L; := {(m,0), (t,1))z. Clearly, if the so-
lutions (zg,yo) and (—xg, —yo) are in L, the solu-
tions (—xg, yo) and (zg, —yo) are in L,,_¢. This sug-
gests that, to find all the primitive solutions of (1), it
is enough to consider all square roots t of —d modulo
m, where 1 < ¢ < (m/2) and compute for all the vec-
tors (z,y) in Ly with 22 + dy? = m. We will discuss
how to find these vectors.
Lemma 2. Let W = (ui,us), v = {v,v2) be
generators of a lattice such that 0 < wus, 0 < wo,
lv1| < |u1|, urvy < 0. Then the vector W = (wy,ws)
with the least we such that 0 < we, |wi| < |v1] is
given by W = U + qv, where ¢ = L— (ul/vl)J.
Moreover, (U, V)z = (V, U +qv)z.
For the proof (cf. [3]).
Lemma 3. Let ro, 71 be positive integers.
Construct the finite sequences {r;}, {¢;}, {P;}, and
{Q:} as follows:
Ty = qiTit1 +Tit2, ¢ = LﬂjJ
P1=0FP=1 FPu=q¢P+P
RQ-1=10Q0=0; Qit1 =qQi+ Qi1

for 0 <i <n-—1, wherer, = ged(ro,r1) and rp41 =

0. Then, for 0 <i <mn,

(2) ro = Piry + Pi_1riq1,

(3) riy1 = (1) (Pir1 — Qi7o).

The proof is by induction on 3.
Putting 7o = m and 7? = —d (mod m), from
(3) we get,

(4) 7“3 + de_l =0 (modm)

for0 <i<n+1.
Proposition 4. Let rg = m and r1 =t where
t?> = —d (mod m). Construct the sequence {r;},
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{P;} as in Lemma 3. The diophantine equation (1)
has a solution in Ly if and only if dP?_, < m, when
T3 >m >

Proof. (=) Let (x0,yo) be a solution of (1) in
L. Without loss of generality, we can change the
sign of zo and assume yo > 0. If rZ_, >m >}, we
have |zo|? < 23 + dy3 = m < r?_,. That is |zo| <
|7"k_1|.

Put u = (—m,0) and u; = (t,1). By Lemma 2,
the vector us = (—7a,q) is the vector W = (w1, ws)
with the least wq > 0 such that |wq] < |t|. Note that
the pair ui, us satisfies the premises of Lemma 2.
Thus we can apply the Lemma repeatedly. Induc-
tively, we can show that the vector w = (w1, wa)
with the least we > 0 such that |wy| < r;_; is u; =
((=1)""try, Pica).

In particular, the vector W = (w1, w2) with
the least wy such that |wi| < [(=1)F2r,_4] is
((=1)*=Yr4, Py_1). Since |xq| < ri_1, it follows that
Pr_1 < yp and hence, clP,?_1 < dyg < m.

(<) From (4), we have dP? | = —ri=m—r}
(mod m). We get the solution (ry, Pr_1). Ul

We now consider the special case d = 1.

Proposition 5. Let t? = —1 (mod m), 0 <
t < (m/2). Set ro =m and r1 =t and construct the
finite sequence {r;}, ri = qiTit1 + rit2, for 0 <i <
n—1, whererg >r1 >--->rp,=1>r,41 =0. If
TRy >m>rp thenm =1y + 17,4

Proof. Construct the sequence {P;} as in
Lemma 3. We get the following relations.

m=1r9=PFP,rp,+ Py_17p4+1 = P,
Tn—1= Qn-1Tn + Tn41 = qn-1 2 2
m=PFP,=q, 1P,_1+ P,_2>2P,_1,
since n > 2 and P,_o # 0. Also
L=7r,=(=1)""YPo_1r1 — Qn_170)
=(-1)""'P, 1t (mod m)
t=(—1)"P,_1

It follows that n must be even say n = 2k, and ¢t =

(mod m).

P, _1. Inductively, we can show P,_; = r; for 0 <
i < n+ 1. From Lemma 3, we have m = rg =
Pyri + Py_17rp41 = 7“,3 + ri+1. Observe that 7“,%_1 =
(qr—17k +TEr1)? > 7“,% +7°,%+1 =m > 7“,%. This proves
the proposition. ]

2. A proof of uniqueness. We now show
that for a particular square root ¢ modulo m of —d,
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the only primitive solution of (1) belonging to the
lattice ((m,0), (¢,1))z is (rk, Px—1). In the case d =
1, because of symmetry we have two: (ry, 7,+1) and
(Tk-i-la Tk)-

Assume that (rg, Py—1) is the solution of (1) ob-
tained by applying Cornacchia’s algorithm. When
d =1, it is clear that deQ_H > m.

Lemma 6. If d > 1, then dP? > m.

Proof. Suppose that dP? < m. As in the proof
of Proposition 4, we get 77, + dP? = m. From (2),
we have

m =719 = Pgrg + Pr_17k41

CTREPE i TP
- 2 2
retdPY + i +dPE
< p— m
2
We have a contradiction. ]
Proposition 7. Let d > 1 and t2 = —d

(mod m). If (x,y), y > 0 is a solution of (1) such
that (z,y) € Ly, then (z,y) = ((=1)1ry, Py_1).

Proof. Since 22 +dy? = m it follows that |z|? <
m and dy? < m. Thus, |z| < rg_1. If || < rp <
ri_1, then y > Py, by minimality of Py. Thus dy? >
deQ > m.

If |z| > 7, since || < rp—1, then y > Py by
minimality of Py_;. Then 2? + dy* > ri + dP?_| =
m. 1

Proposition 8.  Let t* = —1 (mod m). If
(r,9), y > 0 is a solution of ¥®> + y*> = m such
that (x,y) € Ly, then (z,y) = ((=1)* try, rry1) or
(z,y) = (=1 rps1, 75).-

The proof is similar to that of Proposition 7.

This proves that using Cornacchia’s algorithm
on all the square-root ¢ modulo m of —d, we can find
all the primitive solutions of (1).
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