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On the solution of x2 + dy2 = m
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Abstract: A simple proof of the validity of Cornacchia’s algorithm for solving the dio-
phantine equation x2 + dy2 = m is presented. Furthermore, the special case d = 1 is solved
completely.
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In 1908, G. Cornacchia gave an algorithm for
solving the diophantine equation x2 + dy2 = 4p, for
p prime (cf. [1]). The same algorithm can be used to
solve the diophantine equation

(1) x2 + dy2 = m

where 1 ≤ d < m, m may not be prime. The algo-
rithm is briefly described as follows:

1. Put r0 = m and r21 ≡ −d (mod m), where 0 ≤
r1 ≤ (m/2).

2. Using Euclidean algorithm, compute ri+2 ≡ ri

(mod ri+1) recursively until we arrive at r2k <

m.
3. If (m− r2k/d) is a square integer, say s2, we get

the solution (rk, s).
A proof of the validity of this algorithm re-

lying on Diophantine Approximation was given by
F. Morain and J.-L. Nicolas (cf. [2]). In this paper,
we give a simpler proof. Moreover, we claim that if
r0 = m, r21 ≡ −1 (mod m), 1 ≤ r1 < (m/2), then
m = r2k + r2k+1, when r2k−1 > m > r2k.

1. A simple proof. Let d and m be integers
such that 1 ≤ d < m.

Lemma 1. If (x0, y0) is a primitive solution
of (1), then there exists an integer t, 0 < t < m, t2 ≡
−d (mod m) such that (x0, y0) ∈ 〈(m, 0), (t, 1)〉Z.

Proof. Clearly, gcd(y0, m) = 1. Choose t, 0 <
t < m such that y0t ≡ x0 (mod m). We have
0 ≡ x2

0 + dy2
0 ≡ y2

0(t2 + d) (mod m). Thus, t2 ≡
−d (mod m). Also, for some integer l, (x0, y0) =
l(m, 0) + y0(t, 1) ∈ 〈(m, 0), (t, 1)〉Z.
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Define Lt := 〈(m, 0), (t, 1)〉Z. Clearly, if the so-
lutions (x0, y0) and (−x0,−y0) are in Lt, the solu-
tions (−x0, y0) and (x0,−y0) are in Lm−t. This sug-
gests that, to find all the primitive solutions of (1), it
is enough to consider all square roots t of −d modulo
m, where 1 ≤ t ≤ (m/2) and compute for all the vec-
tors (x, y) in Lt with x2 + dy2 = m. We will discuss
how to find these vectors.

Lemma 2. Let −→u = 〈u1, u2〉, −→v = 〈v1, v2〉 be
generators of a lattice such that 0 ≤ u2, 0 ≤ v2,

|v1| < |u1|, u1v1 < 0. Then the vector −→w = 〈w1, w2〉
with the least w2 such that 0 < w2, |w1| < |v1| is
given by −→w = −→u + q−→v , where q =

⌊ − (u1/v1)
⌋
.

Moreover, 〈−→u ,−→v 〉Z = 〈−→v ,−→u + q−→v 〉Z.
For the proof (cf. [3]).
Lemma 3. Let r0, r1 be positive integers.

Construct the finite sequences {ri}, {qi}, {Pi}, and
{Qi} as follows:

ri = qiri+1 + ri+2, qi =
⌊

ri

ri+1

⌋
P−1 = 0;P0 = 1; Pi+1 = qiPi + Pi−1

Q−1 = 1;Q0 = 0; Qi+1 = qiQi +Qi−1

for 0 ≤ i ≤ n−1, where rn = gcd(r0, r1) and rn+1 =
0. Then, for 0 ≤ i ≤ n,

r0 = Piri + Pi−1ri+1,(2)

ri+1 = (−1)i(Pir1 −Qir0).(3)

The proof is by induction on i.
Putting r0 = m and r21 ≡ −d (mod m), from

(3) we get,

(4) r2i + dP 2
i−1 ≡ 0 (mod m)

for 0 ≤ i ≤ n+ 1.
Proposition 4. Let r0 = m and r1 = t where

t2 ≡ −d (mod m). Construct the sequence {ri},
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{Pi} as in Lemma 3. The diophantine equation (1)
has a solution in Lt if and only if dP 2

k−1 < m, when
r2k−1 > m > r2k.

Proof. (⇒) Let (x0, y0) be a solution of (1) in
Lt. Without loss of generality, we can change the
sign of x0 and assume y0 > 0. If r2k−1 > m > r2k, we
have |x0|2 < x2

0 + dy2
0 = m < r2k−1. That is |x0| <

|rk−1|.
Put −→u0 = (−m, 0) and −→u1 = (t, 1). By Lemma 2,

the vector −→u2 = (−r2, q) is the vector −→w = (w1, w2)
with the least w2 > 0 such that |w1| < |t|. Note that
the pair −→u1, −→u2 satisfies the premises of Lemma 2.
Thus we can apply the Lemma repeatedly. Induc-
tively, we can show that the vector −→w = (w1, w2)
with the least w2 > 0 such that |w1| < ri−1 is −→ui =
((−1)i−1ri, Pi−1).

In particular, the vector −→w = (w1, w2) with
the least w2 such that |w1| < |(−1)k−2rk−1| is
((−1)k−1rk, Pk−1). Since |x0| < rk−1, it follows that
Pk−1 ≤ y0 and hence, dP 2

k−1 ≤ dy2
0 < m.

(⇐) From (4), we have dP 2
k−1 ≡ −r2k ≡ m− r2k

(mod m). We get the solution (rk, Pk−1).
We now consider the special case d = 1.
Proposition 5. Let t2 ≡ −1 (mod m), 0 <

t < (m/2). Set r0 = m and r1 = t and construct the
finite sequence {ri}, ri = qiri+1 + ri+2, for 0 ≤ i ≤
n− 1, where r0 > r1 > · · · > rn = 1 > rn+1 = 0. If
r2k−1 > m > r2k then m = r2k + r2k+1.

Proof. Construct the sequence {Pi} as in
Lemma 3. We get the following relations.

m = r0 = Pnrn + Pn−1rn+1 = Pn

rn−1 = qn−1rn + rn+1 = qn−1 ≥ 2

m = Pn = qn−1Pn−1 + Pn−2 > 2Pn−1,

since n ≥ 2 and Pn−2 �= 0. Also

1 = rn = (−1)n−1(Pn−1r1 −Qn−1r0)

≡ (−1)n−1Pn−1t (mod m)

t ≡ (−1)nPn−1 (mod m).

It follows that n must be even say n = 2k, and t =
Pn−1. Inductively, we can show Pn−i = ri for 0 ≤
i ≤ n + 1. From Lemma 3, we have m = r0 =
Pkrk + Pk−1rk+1 = r2k + r2k+1. Observe that r2k−1 =
(qk−1rk + rk+1)2 > r2k + r2k+1 = m > r2k. This proves
the proposition.

2. A proof of uniqueness. We now show
that for a particular square root t modulo m of −d,

the only primitive solution of (1) belonging to the
lattice 〈(m, 0), (t, 1)〉Z is (rk, Pk−1). In the case d =
1, because of symmetry we have two: (rk, rk+1) and
(rk+1, rk).

Assume that (rk, Pk−1) is the solution of (1) ob-
tained by applying Cornacchia’s algorithm. When
d = 1, it is clear that dP 2

k+1 ≥ m.
Lemma 6. If d > 1, then dP 2

k ≥ m.
Proof. Suppose that dP 2

k < m. As in the proof
of Proposition 4, we get r2k+1 + dP 2

k = m. From (2),
we have

m = r0 = Pkrk + Pk−1rk+1

≤ r2k + P 2
k

2
+
r2k+1 + P 2

k−1

2

<
r2k + dP 2

k−1 + r2k+1 + dP 2
k

2
= m.

We have a contradiction.
Proposition 7. Let d > 1 and t2 ≡ −d

(mod m). If (x, y), y > 0 is a solution of (1) such
that (x, y) ∈ Lt, then (x, y) = ((−1)k−1rk, Pk−1).

Proof. Since x2+dy2 = m it follows that |x|2 <
m and dy2 < m. Thus, |x| < rk−1. If |x| < rk <

rk−1, then y ≥ Pk, by minimality of Pk. Thus dy2 ≥
dP 2

k ≥ m.
If |x| > rk, since |x| < rk−1, then y ≥ Pk−1 by

minimality of Pk−1. Then x2 + dy2 > r2k + dP 2
k−1 =

m.
Proposition 8. Let t2 ≡ −1 (mod m). If

(x, y), y > 0 is a solution of x2 + y2 = m such
that (x, y) ∈ Lt, then (x, y) = ((−1)k−1rk, rk+1) or
(x, y) = ((−1)krk+1, rk).

The proof is similar to that of Proposition 7.
This proves that using Cornacchia’s algorithm

on all the square-root t modulo m of −d, we can find
all the primitive solutions of (1).
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