On the rank of the elliptic curve $y^2 = x^3 + kx$. II

By Shoichi Kihara

Department of Neuropsychiatry, School of Medicine, Tokushima University 3-18-15, Kuramoto-cho, Tokushima 770-8503 (Communicated by Shokichi IYANAGA, M. J. A., April 12, 2004)

Abstract: We construct an elliptic curve of the form $y^2 = x^3 + kx$ with rank at least 6 over $Q(x_1, x_2, x_3)$.

Key words: Elliptic curve; rank.

We showed an elliptic curve of the form $y^2 = x^3 + kx$ of rank ≥ 5 over Q(t) in [1]. (See [2] and [3] for the case of rank ≥ 4).

In this paper we improve our previous result and show the following two theorems.

Theorem 1. There is an elliptic curve of the form $y^2 = x^3 + kx$ of rank ≥ 6 over $Q(x_1, x_2, x_3)$.

Theorem 2. There are infinitely many nonisomorphic elliptic curves of the form $y^2 = x^3 + kx$ of rank ≥ 6 over Q.

We consider the projective curve, $C : x^4 - 2ax^2y^2 + y^4 - bz^4 = 0$. By $X = (a^2 - 1)x^2/z^2$, $Y = (a^2 - 1)x(y^2 - ax^2)/z^3$ and $k = (a^2 - 1)b$. We have the elliptic curve $E : Y^2 = X^3 + kX$. By the permutation of x and y, we have 2 points on the elliptic curve E. We assume that $k \neq 0$, then C is a non-singular curve of genus 3. The Jacobian J(C) of the curve C splits completely and is isogenious to $E \times E \times F$, where the elliptic curve F is given by the following equation.

$$F: Y^{2} = X(X + 2ab + 2b)(X + 2ab - 2b),$$

$$X = b^2 z^4 / (x^2 y^2)$$
 and $Y = b^2 (x^4 - y^4) z^2 / (x^3 y^3).$

The above fact and that C has many automorphisms give us high rank elliptic curves and interesting Diophantine relations.

Let x, y, u and w be variables, then we can solve for a and b from

$$x^4 - 2ax^2y^2 + y^4 - b = 0$$
 and $u^4 - 2au^2w^2 + w^4 - b = 0$.

We have 4 points on the corresponding elliptic curve E over Q(x, y, u, w). These points are independent. We show this by the following example.

Let x_i $(1 \le i \le 6)$ be variables, we solve for a and b from

$$x_i^4 - 2ax_i^2x_{i+1}^2 + x_{i+1}^4 - b = 0 \quad (i = 1, 3)$$

Then we have

$$a = (x_1^4 + x_2^4 - x_3^4 - x_4^4) / \left(2(x_1^2 x_2^2 - x_3^2 x_4^2)\right)$$

and

$$b = (x_2^2 x_3^2 - x_1^2 x_4^2)(x_1^2 x_3^2 - x_2^2 x_4^2) / (x_1^2 x_2^2 - x_3^2 x_4^2).$$

We construct another point on the affine curve

$$H: x^4 - 2ax^2y^2 + y^4 - b = 0.$$

Let us consider the case that the point (x_3, x_5) is on H. Then we have

$$x_5^{(1)} = (-x_3^6 + x_1^4 x_3^2 - x_1^2 x_2^2 x_4^2 + x_2^4 x_3^2) / (x_1^2 x_2^2 - x_3^2 x_4^2).$$

We see that (1) has automorphisms $(x_4, x_5) \rightarrow (x_5, x_4)$ and $(x_1, x_2) \rightarrow (x_2, x_1)$.

Now we fix x_1 , x_2 and x_3 and consider (1) as a curve of x_4 and x_5 . Then we see that the point $(x_4, x_5) = P(x_1x_3/x_2, x_2x_3/x_1)$ is on (1). We consider the birational transformation

$$x_4 = x_1 x_2 (u-1) / (x_3 (u+1)), \quad x_5 = w / (2u x_1 x_2 x_3).$$

The inverse is

$$u = (x_1 x_2 + x_3 x_4) / (x_1 x_2 - x_3 x_4),$$

$$w = 2x_1 x_2 x_3 x_5 (x_1 x_2 + x_3 x_4) / (x_1 x_2 - x_3 x_4).$$

Then (1) becomes

(2)
$$w^2 = u \left(-(x_1^4 - x_3^4)(x_2^4 - x_3^4)(u^2 + 1) + 2(x_1^4 x_2^4 + x_1^4 x_3^4 + x_2^4 x_3^4 - x_3^8)u \right)$$

The point P corresponds to the point

$$\begin{aligned} &Q\left((x_2^2+x_3^2)/(x_2^2-x_3^2),\,2x_2^2x_3^2(x_2^2+x_3^2)/(x_2^2-x_3^2)\right)\\ \text{on the elliptic curve (2). We see that } 2Q = \\ &\left(-(x_1^4-x_3^4)/(x_2^4-x_3^4),\,-(x_1^4+x_2^4)(x_1^4-x_3^4)/(x_2^4-x_3^4)\right)\end{aligned}$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 11G05.

This point corresponds to

$$x_4 = x_1 x_2 (2x_3^4 - x_1^4 - x_2^4) / (x_3 (x_1^4 - x_2^4)) \text{ and } x_5 = (x_1^4 + x_2^4) / (2x_1 x_2 x_3).$$

We take this setting in the following. Next we consider the transformation $\sigma : x_3 \to x_5 \ a$ and b do not change by σ but the point (x_3, x_4) goes to the point (x_5, x_6) where

$$x_{6} = \left(x_{1}^{12} - 8x_{1}^{4}x_{2}^{4}x_{3}^{4} + 3x_{1}^{8}x_{2}^{4} + 3x_{1}^{4}x_{2}^{8} + x_{2}^{12}\right) / (4x_{1}^{2}x_{2}^{2}x_{3}^{3}(x_{1}^{4} - x_{2}^{4})).$$

In this way we have 8 points (x_1, x_2) , (x_2, x_1) , (x_3, x_4) , (x_4, x_3) , (x_3, x_5) , (x_5, x_3) , (x_5, x_6) and (x_6, x_5) on the affine curve H, and 8 points on the corresponding elliptic curve E. The six points on E coming from (x_1, x_2) , (x_2, x_1) , (x_3, x_4) , (x_4, x_3) , (x_5, x_3) and (x_6, x_5) are independent. In fact, let $x_1 = 1, x_2 = 2, x_3 = 3$ then the determinant of the Grammian height-pairing matrix of these 6 points is 8262681.77 since this is not 0 these points are independent.

So we have Theorem 1. The proof of Theorem 2 is similar as in [1].

We note that by the change of variables x = u + w and y = u - w and by multiplying the denominators we have the Diophantine relations

$$u_i^4 - 2cu_i^2 w_i^2 + w_i^4 = u_j^4 - 2cu_j^2 w_j^2 + w_j^4$$
 $(1 \le i, j \le 4)$
where $c = (a+3)/(a-1)$ and $u_i w_i$ $(1 \le i \le 4)$ are
all different polynomials of x_1, x_2 and x_3 .

References

- [1] Kihara, S.: On the rank of the elliptic curve $y^2 = x^3 + kx$. Proc. Japan Acad., **74A**, 115–116 (1998).
- [2] Mestre, J.-F.: Rang de courbes elliptiques d'invariant donné. C. R. Acad. Sci. Paris Sér. I Math., **314**, 919–922 (1992).
- [3] Nagao, K.: On the rank of elliptic curve $y^2 = x^3 kx$. Kobe J. Math., **11**, 205–210 (1994).

25

No. 4]