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On the rank of the elliptic curve y2 = x3 + kx. II
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Abstract: We construct an elliptic curve of the form y2 = x3 + kx with rank at least 6
over Q(x1, x2, x3).
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We showed an elliptic curve of the form y2 =
x3 + kx of rank ≥ 5 over Q(t) in [1]. (See [2] and [3]
for the case of rank ≥ 4).

In this paper we improve our previous result and
show the following two theorems.

Theorem 1. There is an elliptic curve of the
form y2 = x3 + kx of rank ≥ 6 over Q(x1, x2, x3).

Theorem 2. There are infinitely many non-
isomorphic elliptic curves of the form y2 = x3 + kx

of rank ≥ 6 over Q.
We consider the projective curve, C : x4 −

2ax2y2 + y4 − bz4 = 0. By X = (a2 − 1)x2/z2,
Y = (a2 − 1)x(y2 − ax2)/z3 and k = (a2 − 1)b. We
have the elliptic curve E : Y 2 = X3 + kX. By the
permutation of x and y, we have 2 points on the el-
liptic curve E. We assume that k �= 0, then C is a
non-singular curve of genus 3. The Jacobian J(C)
of the curve C splits completely and is isogenious to
E×E×F , where the elliptic curve F is given by the
following equation.

F : Y 2 = X(X + 2ab+ 2b)(X + 2ab− 2b),

X = b2z4/(x2y2) and Y = b2(x4 − y4)z2/(x3y3).

The above fact and that C has many automorphisms
give us high rank elliptic curves and interesting Dio-
phantine relations.

Let x, y, u and w be variables, then we can solve
for a and b from

x4−2ax2y2+y4−b = 0 and u4−2au2w2+w4−b = 0.

We have 4 points on the corresponding elliptic curve
E over Q(x, y, u, w). These points are independent.
We show this by the following example.

Let xi (1 ≤ i ≤ 6) be variables, we solve for a
and b from
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We construct another point on the affine curve

H : x4 − 2ax2y2 + y4 − b = 0.

Let us consider the case that the point (x3, x5) is on
H . Then we have
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We see that (1) has automorphisms (x4, x5) →
(x5, x4) and (x1, x2) → (x2, x1).

Now we fix x1, x2 and x3 and consider (1) as
a curve of x4 and x5. Then we see that the point
(x4, x5) = P (x1x3/x2, x2x3/x1) is on (1). We con-
sider the birational transformation

x4 = x1x2(u−1)/ (x3(u + 1)) , x5 = w/(2ux1x2x3).

The inverse is

u = (x1x2 + x3x4)/(x1x2 − x3x4),

w = 2x1x2x3x5(x1x2 + x3x4)/(x1x2 − x3x4).

Then (1) becomes
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The point P corresponds to the point
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on the elliptic curve (2). We see that 2Q =(−(x4
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This point corresponds to
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We take this setting in the following. Next we con-
sider the transformation σ : x3 → x5 a and b do not
change by σ but the point (x3, x4) goes to the point
(x5, x6) where
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In this way we have 8 points (x1, x2), (x2, x1),
(x3, x4), (x4, x3), (x3, x5), (x5, x3), (x5, x6) and
(x6, x5) on the affine curve H , and 8 points on the
corresponding elliptic curve E. The six points on
E coming from (x1, x2), (x2, x1), (x3, x4), (x4, x3),
(x5, x3) and (x6, x5) are independent. In fact, let
x1 = 1, x2 = 2, x3 = 3 then the determinant of the
Grammian height-pairing matrix of these 6 points is
8262681.77 since this is not 0 these points are inde-

pendent.
So we have Theorem 1. The proof of Theorem 2

is similar as in [1].
We note that by the change of variables x = u+

w and y = u−w and by multiplying the denomina-
tors we have the Diophantine relations
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where c = (a+ 3)/(a− 1) and ui wi (1 ≤ i ≤ 4) are
all different polynomials of x1, x2 and x3.
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d’invariant donné. C. R. Acad. Sci. Paris Sér. I
Math., 314, 919–922 (1992).

[ 3 ] Nagao, K.: On the rank of elliptic curve y2 = x3−
kx. Kobe J. Math., 11, 205–210 (1994).




