Absolute Frobenius operators

By Nobushige Kurokawa
Department of Mathematics, Tokyo Institute of Technology
Oo-okayama, Meguro-ku, Tokyo 152-8551
(Communicated by Shigefumi Mori, M. J. A., Nov. 12, 2004)

Abstract

We construct the absolute Frobenius operator as a matrix of infinite size for each prime. We calculate the characteristic polynomial and the trace. We investigate the composition of two absolute Frobenius operators also.

Key words: Frobenius automorphism; infinite permutation; infinite matrix; zeta function.

1. Introduction. For a prime number p, let
\mathbf{f}_{p}

be an infinite matrix, where the number of copies of the size n permutation matrix

$$
Z_{n}=\left(\begin{array}{cccc}
0 & 1 & & 0 \\
& \ddots & \ddots & \\
& 0 & \ddots & 1 \\
1 & & & 0
\end{array}\right)
$$

is given by

$$
\kappa_{p}(n)=\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) p^{d}
$$

with the Möbius function $\mu(n)$. This matrix \mathbf{f}_{p} is obtained as the matrix representation of the Frobenius automorphism Frob $_{p}$ acting on $\overline{\mathbf{F}_{p}}$, where $\overline{\mathbf{F}_{p}}$

[^0]denotes the algebraic closure of the finite prime field \mathbf{F}_{p}. Here $\operatorname{Frob}_{p}(\alpha)=\alpha^{p}$ for $\alpha \in \overline{\mathbf{F}_{p}}$, so Frob_{p} is seen as an infinite permutation on $\overline{\mathbf{F}_{p}}$. In the words of $[\mathrm{KOW}], \operatorname{Frob}_{p}$ acts on the \mathbf{F}_{1}-vector space $\overline{\mathbf{F}}_{p}$, and the matrix representation \mathbf{f}_{p} of Frob_{p} is given via
$$
\operatorname{Aut}_{\mathbf{F}_{1}}\left(\overline{\mathbf{F}}_{p}\right)=G L_{\infty}\left(\mathbf{F}_{1}\right)=S_{\infty} \hookrightarrow G L_{\infty}(\mathbf{Z}) .
$$

Thus, \mathbf{f}_{p} respects only the combinatorial structure, so \mathbf{f}_{p} acts on any countable infinite set. Hence we consider \mathbf{f}_{p} as the absolute Frobenius operator. We refer to [Kur1, Kur2, M, KK1-KK3, KOW, KW1, KW3, S, Dei] for absolute arithmetic related to this theme; especially we calculated the zeta function associated to the absolute tensor product of several finite prime fields in [Kur1, KK2, KK3, KW1], and we studied $\left[\partial_{p}, \partial_{q}\right]=\partial_{p} \partial_{q}-\partial_{q} \partial_{p}$ for absolute derivations ∂_{p} and ∂_{q} in [KOW].

In this paper we study basic properties of \mathbf{f}_{p}. First using the calculation of the zeta function of $\mathbf{F}_{p}[T]$ (or $\operatorname{Spec} \mathbf{F}_{p}[T]$) due to Kornblum [Kor] we have the characteristic polynomial. For the description we introduce an infinite determinant $\operatorname{det}_{\kappa}(A)$ as follows: We say that an infinite matrix $A=$ $(a(m, n))_{m, n \geq 1}$ is virtually diagonal if there exists a sequence of finite matrices A_{n} of size $\kappa(n)$ such that $A=\operatorname{diag}\left(A_{1}, A_{2}, \ldots\right)$. In this situation, we define

$$
\operatorname{det}_{\kappa}(A)=\prod_{n=1}^{\infty} \operatorname{det}\left(A_{n}\right)
$$

when the infinite product converges.
Theorem 1. For a prime p and $m \geq 1$, we have

$$
\operatorname{det}_{\kappa_{p}}\left(1-\mathbf{f}_{p}^{m} t\right)=1-p^{m} t
$$

Theorem 2. Let

$$
\begin{aligned}
Z(s)= & \prod_{p}\left(1-\mathbf{f}_{p} p^{-s}\right)^{-1} \\
= & 1+\mathbf{f}_{2} 2^{-s}+\mathbf{f}_{3} 3^{-s}+\mathbf{f}_{2}^{2} 4^{-s}+\mathbf{f}_{5} 5^{-s} \\
& +\mathbf{f}_{2} \mathbf{f}_{3} 6^{-s}+\mathbf{f}_{7} 7^{-s}+\cdots
\end{aligned}
$$

with the usual ordering on p. Then:
(1) $Z(s)$ converges componentwise absolutely in $\operatorname{Re}(s)>1$.
(2) $Z(s)=\left(\begin{array}{ccc}\zeta(s) & 0 & 0 \\ 0 & \zeta(s) & \\ 0 & & *\end{array}\right)$.
(3) $\operatorname{det} Z(s)=\zeta(s-1)$.

Now we look at the trace. We define the trace of an infinite matrix $A=(a(m, n))_{m, n \geq 1}$ as

$$
\operatorname{trace}(A)=\sum_{n=1}^{\infty} a(n, n)
$$

when this infinite sum converges.
Theorem 3. For a prime p and $m \geq 1$,

$$
\operatorname{trace}\left(\mathbf{f}_{p}^{m}\right)=p^{m}
$$

Theorem 4. Let p and q be distinct primes. Then:
(1) $\min \{p, q\} \leq \operatorname{trace}\left(\mathbf{f}_{p} \mathbf{f}_{q}\right) \leq \max \left\{p^{2}, q^{2}\right\}$.
(2) $\operatorname{trace}\left(\mathbf{f}_{p} \mathbf{f}_{q}\right)=\operatorname{trace}\left(\mathbf{f}_{q} \mathbf{f}_{p}\right)$.
(3) $\operatorname{trace}\left(\left[\mathbf{f}_{p}, \mathbf{f}_{q}\right]\right)=0$ for $\left[\mathbf{f}_{p}, \mathbf{f}_{q}\right]=\mathbf{f}_{p} \mathbf{f}_{q}-\mathbf{f}_{q} \mathbf{f}_{p}$.

This shows that the non-commutativity betwen \mathbf{f}_{p} and \mathbf{f}_{q} is not detected by the trace. Now we introduce the weighted trace. For a complex number s and an infinite matrix $A=(a(m, n))_{m, n \geq 1}$ we define

$$
\operatorname{trace}_{s}(A)=\sum_{n=1}^{\infty} \frac{a(n, n)}{n^{s}}
$$

which is considered as a zeta function. We remark that formally

$$
\operatorname{trace}_{-1}(A)=\sum_{n=1}^{\infty} n \cdot a(n, n)
$$

is indicating a Casimir energy (see [KW2, KW3]). For example, in the case of $A=\mathbf{1}$, the infinite unit matrix,

$$
\operatorname{trace}_{s}(\mathbf{1})=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\zeta(s)
$$

is the Riemann zeta function, and

$$
\operatorname{trace}_{-1}(\mathbf{1})=-\frac{1}{12}
$$

is the usual Casimir energy.
Theorem 5. For distinct primes p and q, $\operatorname{trace}_{s}\left(\left[\mathbf{f}_{p}, \mathbf{f}_{q}\right]\right)$ is non-zero in general. For example:
(1) $\operatorname{trace}_{-1}\left(\left[\mathbf{f}_{2}, \mathbf{f}_{3}\right]\right)=-2$.
(2) $\operatorname{trace}_{-1}\left(\left[\mathbf{f}_{2}, \mathbf{f}_{5}\right]\right)=-5$.
(3) $\operatorname{trace}_{-1}\left(\left[\mathbf{f}_{3}, \mathbf{f}_{5}\right]\right)=-5$.

This would indicate that the Casimir energy matrix

$$
R_{-1}=\left(\operatorname{trace}_{-1}\left(\left[\mathbf{f}_{p}, \mathbf{f}_{q}\right]\right)\right)_{p, q: \text { primes }}
$$

is an interesting skew symmetric infinite matrix. We hope to return to this theme on another opportunity.
2. Proof of Theorem 1. From Kornblum [Kor] we have

$$
\begin{equation*}
\operatorname{det}_{\kappa_{p}}\left(1-\mathbf{f}_{p} t\right)=1-p t \tag{2.1}
\end{equation*}
$$

In fact

$$
\begin{align*}
\operatorname{det}_{\kappa_{p}}\left(1-\mathbf{f}_{p} t\right) & =\prod_{n=1}^{\infty}\left(1-t^{n}\right)^{\kappa_{p}(n)} \tag{2.2}\\
& =1-p t
\end{align*}
$$

where the last equality (2.2) comes from the formula

$$
\begin{equation*}
\kappa_{p}(n)=\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) p^{d} \tag{2.3}
\end{equation*}
$$

Actually, from

$$
\begin{aligned}
\log \left(\prod_{n=1}^{\infty}\left(1-t^{n}\right)^{\kappa_{p}(n)}\right) & =\sum_{n=1}^{\infty} \kappa_{p}(n) \log \left(1-t^{n}\right) \\
& =-\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\kappa_{p}(n)}{m} t^{n m} \\
& =-\sum_{m=1}^{\infty} \frac{1}{m}\left(\sum_{n \mid m} n \kappa_{p}(n)\right) t^{m}
\end{aligned}
$$

and

$$
\log (1-p t)=-\sum_{m=1}^{\infty} \frac{1}{m} p^{m} t^{m}
$$

we see that the equality

$$
\prod_{n=1}^{\infty}\left(1-t^{n}\right)^{\kappa_{p}(n)}=1-p t
$$

is equivalent to

$$
\begin{equation*}
\sum_{n \mid m} n \kappa_{p}(n)=p^{m} \text { for all } m \geq 1 \tag{2.4}
\end{equation*}
$$

Then, the Möbius inversion formula shows the equivalence between (2.3) and (2.4).

We notice that Dedekind [Ded] obtained the formula (2.3) for $\kappa_{p}(n)$ as the number of the monic irreducible polynomials in $\mathbf{F}_{p}[T]$ of degree n. In other words, this means that the space $\overline{\mathbf{F}_{p}}$ has $\kappa_{p}(n)$ orbits of length n under the action of Frob_{p}. This corresponds to

$$
\zeta\left(s, \operatorname{Spec} \mathbf{F}_{p}[T]\right)=\left(1-p^{1-s}\right)^{-1}
$$

Now, we calculate $\operatorname{det}_{\kappa_{p}}\left(1-\mathbf{f}_{p}^{m} t\right)$. A direct way is to notice that Kornblum's formula (2.1) implies

$$
\operatorname{det}_{\kappa_{p}}\left(1-\mathbf{f}_{p} \zeta t\right)=1-p \zeta t
$$

for $\zeta^{m}=1$. Then

$$
\begin{aligned}
\operatorname{det}_{\kappa_{p}}\left(1-\mathbf{f}_{p}^{m} t^{m}\right) & =\operatorname{det}_{\kappa_{p}}\left(\prod_{\zeta^{m}=1}\left(1-\mathbf{f}_{p} \zeta t\right)\right) \\
& =\prod_{\zeta^{m}=1} \operatorname{det}_{\kappa_{p}}\left(1-\mathbf{f}_{p} \zeta t\right) \\
& =\prod_{\zeta^{m}=1}(1-p \zeta t) \\
& =1-p^{m} t^{m}
\end{aligned}
$$

and we replace t^{m} by t.
3. Proof of Theorem 2.
(1) Let

$$
Z(s)=\sum_{n=1}^{\infty} \frac{F(n)}{n^{s}}
$$

Then, each $F(n)$ is an infinite permutation matrix. Hence matrix components of $F(n)$ are 1 or 0 . This shows that $Z(s)$ converges componentwise absolutely in $\operatorname{Re}(s)>1$.
(2) The matrix components of $F(n)$ at $(1,1)$, $(1,2),(2,1),(2,2)$ are calculated in a straightforward way.
(3) Theorem 1 implies

$$
\begin{aligned}
\operatorname{det}(Z(s)) & =\prod_{p} \operatorname{det}_{\kappa_{p}}\left(1-\mathbf{f}_{p} p^{-s}\right)^{-1} \\
& =\prod_{p}\left(1-p^{1-s}\right)^{-1} \\
& =\zeta(s-1)
\end{aligned}
$$

4. Proof of Theorem 3. Notice that

$$
\operatorname{trace}\left(\mathbf{f}_{p}^{m}\right)=\sum_{n=1}^{\infty} \kappa_{p}(n) \operatorname{trace}\left(Z_{n}^{m}\right)
$$

with

$$
\operatorname{trace}\left(Z_{n}^{m}\right)= \begin{cases}n & \text { if } n \mid m \\ 0 & \text { otherwise }\end{cases}
$$

Thus

$$
\operatorname{trace}\left(\mathbf{f}_{p}^{m}\right)=\sum_{n \mid m} n \kappa_{p}(n)=p^{m}
$$

where we used (2.4).

5. Proof of Theorem 4.

(1) We denote by $\mathbf{f}_{p} \mathbf{f}_{q}(n, n)$ the (n, n) component of the infinite permutation matrix $\mathbf{f}_{p} \mathbf{f}_{q}$. We show first that

$$
\mathbf{f}_{p} \mathbf{f}_{q}(n, n)=0 \text { if } n>\max \left\{p^{2}, q^{2}\right\}
$$

Suppose that $\mathbf{f}_{p} \mathbf{f}_{q}(N, N)=1$. Denote by $\mathbf{f}_{p}(m, n)$ and $\mathbf{f}_{q}(m, n)$ the (m, n)-component of \mathbf{f}_{p} and \mathbf{f}_{q} respectively. Then

$$
\mathbf{f}_{p} \mathbf{f}_{q}(N, N)=\sum_{n} \mathbf{f}_{p}(N, n) \mathbf{f}_{q}(n, N)
$$

Write

$$
\begin{equation*}
N=\sum_{j=1}^{k-1} j \kappa_{p}(j)+(l-1) k+m \tag{5.1}
\end{equation*}
$$

with $k \geq 1,1 \leq l \leq \kappa_{p}(k)$, and $1 \leq m \leq k$. This means that the N-th row of \mathbf{f}_{p} coincides with the m th row of the l-th matrix Z_{k} of size k appearing in \mathbf{f}_{p}. Then $\mathbf{f}_{p}(N, n)=1$ only for

$$
\begin{equation*}
n=\sum_{j=1}^{k-1} j \kappa_{p}(j)+(l-1) k+(m+1)_{k} \tag{5.2}
\end{equation*}
$$

where

$$
(m+1)_{k}= \begin{cases}m+1 & \text { if } m=1, \ldots, k-1 \\ 1 & \text { if } m=k\end{cases}
$$

Hence it must be $\mathbf{f}_{q}(n, N)=1$ for this n. Writing

$$
\begin{equation*}
n=\sum_{j=1}^{k^{\prime}-1} j \kappa_{q}(j)+\left(l^{\prime}-1\right) k^{\prime}+m^{\prime} \tag{5.3}
\end{equation*}
$$

with $k^{\prime} \geq 1,1 \leq l^{\prime} \leq \kappa_{q}\left(k^{\prime}\right)$, and $1 \leq m^{\prime} \leq k^{\prime}$ similarly to (5.1), we have

$$
\begin{equation*}
N=\sum_{j=1}^{k^{\prime}-1} j \kappa_{q}(j)+\left(l^{\prime}-1\right) k^{\prime}+\left(m^{\prime}+1\right)_{k^{\prime}} \tag{5.4}
\end{equation*}
$$

as in (5.2). Hence, from (5.1)-(5.4) we get
(5.5) $m-(m+1)_{k}=N-n=\left(m^{\prime}+1\right)_{k^{\prime}}-m^{\prime}$.

To treat (5.5), we divide into four cases: (a) $m=k$, $m^{\prime}=k^{\prime}$, (b) $m=k, m^{\prime} \neq k^{\prime}$, (c) $m \neq k, m^{\prime}=k^{\prime}$, (d) $m \neq k, m^{\prime} \neq k^{\prime}$. In the case (a) we have $k-$ $1=1-k^{\prime}$, so we get $k=k^{\prime}=1$, hence $N \leq p, q$.

In the case (b) we have $k-1=1$, so $k=2$, and $N \leq p^{2}$. In the case (c) we have $-1=1-k^{\prime}$, so $k^{\prime}=2$, and $N \leq q^{2}$. The case (d) does not occur since the condition (5.5) implies $-1=1$ in this case. Thus, we get $N \leq \max \left\{p^{2}, q^{2}\right\}$. So, $\mathbf{f}_{p} \mathbf{f}_{q}(n, n)=0$ if $n>\max \left\{p^{2}, q^{2}\right\}$. Hence

$$
\operatorname{trace}\left(\mathbf{f}_{p} \mathbf{f}_{q}\right) \leq \max \left\{p^{2}, q^{2}\right\}
$$

The inequality

$$
\operatorname{trace}\left(\mathbf{f}_{p} \mathbf{f}_{q}\right) \geq \min \{p, q\}
$$

is obvious.
(2) Here, it is convenient to use the permutational description. We denote by $f_{p} \in S_{\infty}$ the permutation corresponding to \mathbf{f}_{p}. In other words \mathbf{f}_{p} is the matrix representation of f_{p} :

$$
\mathbf{f}_{p}=\left(\delta_{m f_{p}(n)}\right)_{m, n \geq 1} .
$$

Then we get

$$
\operatorname{trace}\left(\mathbf{f}_{p} \mathbf{f}_{q}\right)=\# \operatorname{Fix}\left(f_{p} f_{q}\right)
$$

and

$$
\operatorname{trace}\left(\mathbf{f}_{q} \mathbf{f}_{p}\right)=\# \operatorname{Fix}\left(f_{q} f_{p}\right)
$$

where

$$
\operatorname{Fix}(\sigma)=\{n=1,2,3, \ldots \mid \sigma(n)=n\}
$$

for $\sigma \in S_{\infty}$. Hence it is sufficient to show

$$
\# \operatorname{Fix}\left(f_{p} f_{q}\right)=\# \operatorname{Fix}\left(f_{q} f_{p}\right)
$$

and we see this equality from the bijection $\operatorname{Fix}\left(f_{p} f_{q}\right) \rightarrow \operatorname{Fix}\left(f_{q} f_{p}\right)$ given by $n \mapsto f_{p}^{-1}(n)$.
(3) This follows from (2).
6. Proof of Theorem 5. The results are obtained from direct calculations as follows:
(1)

$$
\begin{aligned}
\operatorname{trace}_{s}\left(\mathbf{f}_{2} \mathbf{f}_{3}\right) & =1+2^{-s}+6^{-s}+8^{-s} \\
\operatorname{trace}_{s}\left(\mathbf{f}_{3} \mathbf{f}_{2}\right) & =1+2^{-s}+7^{-s}+9^{-s} \\
\operatorname{trace}_{s}\left(\left[\mathbf{f}_{2}, \mathbf{f}_{3}\right]\right) & =6^{-s}-7^{-s}+8^{-s}-9^{-s}
\end{aligned}
$$

$$
\begin{align*}
\operatorname{trace}_{s}\left(\mathbf{f}_{2} \mathbf{f}_{5}\right)= & 1+2^{-s}+6^{-s}+12^{-s}+16^{-s} \tag{2}\\
& +20^{-s}+24^{-s} \\
\operatorname{trace}_{s}\left(\mathbf{f}_{5} \mathbf{f}_{2}\right)= & 1+2^{-s}+7^{-s}+13^{-s}+17^{-s} \\
& +21^{-s}+25^{-s} \\
\operatorname{trace}_{s}\left(\left[\mathbf{f}_{2}, \mathbf{f}_{5}\right]\right)= & 6^{-s}-7^{-s}+12^{-s}-13^{-s} \\
& +16^{-s}-17^{-s}+20^{-s}-21^{-s} \\
& +24^{-s}-25^{-s}
\end{align*}
$$

$$
\begin{align*}
\operatorname{trace}_{s}\left(\mathbf{f}_{3} \mathbf{f}_{5}\right)= & 1+2^{-s}+3^{-s}+6^{-s}+7^{-s} \tag{3}\\
& +8^{-s}+9^{-s}+10^{-s}+14^{-s} \\
& +16^{-s}+20^{-s}+22^{-s} \\
\operatorname{trace}_{s}\left(\mathbf{f}_{5} \mathbf{f}_{3}\right)= & 1+2^{-s}+3^{-s}+6^{-s}+7^{-s} \\
& +8^{-s}+9^{-s}+11^{-s}+15^{-s} \\
& +17^{-s}+21^{-s}+23^{-s} \\
\operatorname{trace}_{s}\left(\left[\mathbf{f}_{3}, \mathbf{f}_{5}\right]\right)= & 10^{-s}-11^{-s}+14^{-s}-15^{-s} \\
& +16^{-s}-17^{-s}+20^{-s}-21^{-s} \\
& +22^{-s}-23^{-s} .
\end{align*}
$$

We notice that the permutational description f_{p} is more comfortable for these calculations.

Acknowledgement. The author would like to express his hearty thanks to the referee for suggesting various improvements on descriptions.

References

[Ded] Dedekind, D.: Abriss einer Theorie der höhern Congruenzen in Bezug auf einen reelen PrimzahlModulus. J. Reine Angew. Math., 54, 1-26 (1857).
[Dei] Deitmar, A.: Schemes over \mathbf{F}_{1}. (2004). (Preprint).
[Kor] Kornblum, H.: Über die Primfunktionen in einer arithmetischen Progression. Math. Zeit., 5, 100111 (1919).
[Kur1] Kurokawa, N.: Multiple zeta functions: an example. Adv. Stud. Pure Math., 21, Kinokuniya, Tokyo, pp. 219-226 (1992).
[Kur2] Kurokawa, N.: Special values of Selberg zeta functions. Contemp. Math., 83, Amer. Math. Soc., Providence, RI, pp. 133-150 (1989).
[KK1] Kurokawa, N., and Koyama, S.: Multiple sine functions. Forum Math. 15, 839-876 (2003).
[KK2] Koyama, S., and Kurokawa, N.: Multiple zeta functions: the double sine function and the signed double Poisson summation formula. Compositio Math., 140, 1176-1190 (2004).
[KK3] Koyama, S., and Kurokawa, N.: Multiple Euler products. St. Petersburg Math. J. (2004). (In press).
[KOW] Kurokawa, N., Ochiai, H., and Wakayama, M.: Absolute derivations and zeta functions. Doc. Math. 2003, Extra Vol., 565-584 (2003).
[KW1] Kurokawa, N., and Wakayama, M.: Absolute tensor products. Int. Math. Res. Not., 2004(5), 249260 (2004).
[KW2] Kurokawa, N., and Wakayama, M.: Casimir effects on Riemann surfaces. Indag. Math. (N.S.), 13, 63-75 (2002).
[KW3] Kurokawa, N., and Wakayama, M.: Absolute Casimir Elements. Iwanami, Tokyo (2002), (in Japanese).
[M] Manin, Y.: Lectures on zeta functions and motives (according to Deninger and Kurokawa). Astérisque, 228, 121-163 (1995).
[S] Soulé, C.: Les variétés sur le corps à un élément. (2003-2004). (Preprint)

[^0]: 2000 Mathematics Subject Classification. 11M06.

