On the Stiefel-Whitney class of the adjoint representation of \boldsymbol{E}_{8}

By Akihiro Ohsita

Faculty of Human Sciences, Osaka University of Economics
2-2-8, Osumi, Higashiyodogawa-ku, Osaka 533-8533
(Communicated by Shigefumi Mori, m. J. A., Oct. 12, 2004)

Abstract

Let \widetilde{E}_{8} be the 3-connected covering space of the 1-connected, compact exceptional group E_{8}, which is regarded as the loop space of the homotopy fibre $B \widetilde{E}_{8}$ of a map from $B E_{8}$, the classifying space of E_{8}, to an Eilenberg-MacLane space. The Stiefel-Whitney classes of the adjoint representation of E_{8} induce elements of the $\bmod 2$ cohomology of $B \widetilde{E}_{8}$. These images are computed.

Key words: Stiefel-Whitney class; classifying space; exceptional Lie group; adjoint representation.

1. Introduction. Let E_{l} be the 1-connected compact exceptional Lie group of type E_{l}, where l is the rank. Let \widetilde{E}_{l} be the 3 -connected covering space of E_{l}. The cohomology modulo 2 of the classifying space of E_{8} is not determined, but that of \widetilde{E}_{8}, $H^{*}\left(B \widetilde{E}_{8}\right)$, is done. Refer to [3] for it and also [2] for the action of A^{*}, the $\bmod 2$ Steenrod algebra. We need data to compute $H^{*}\left(B E_{8}\right)$ with spectral sequences. Our main result is Theorem 4 , which states the image of the Stiefel-Whitney class of the adjoint representation of E_{8} in $H^{*}\left(B \widetilde{E}_{8}\right)$. Detailed proofs will be found in another paper.

Throughout this paper $H^{*}(X)$ denotes the mod 2 cohomology ring of a space X. If S is a non-empty subset of an algebra, $\langle S\rangle$ denotes the subalgebra generated by S.
2. Cohomology of the classifying space of 3-connected cover. Let T^{l} be a maximal torus of E_{l} and q^{\prime} a generator of $H^{4}\left(B E_{l} ; \boldsymbol{Z}\right)$. Let $\pi_{l}, \widehat{\pi}_{l}, \lambda_{l}$, $\widetilde{\lambda}_{l}, \varphi_{l}$ and $\widetilde{\varphi}_{l}$ denote the natural maps such that the following diagrams are commutative, where the rows are fibrations in the left one.

Since $H^{4}\left(B E_{l} ; \boldsymbol{Z}\right) \cong \boldsymbol{Z}$ and $B E_{l}$ is 3 -connected, there is a unique non-zero element q in $H^{4}\left(B E_{l}\right)$. Let $H^{*}\left(B T^{l}\right) \cong \boldsymbol{F}_{2}\left[t_{1}, t_{2}, \ldots, t_{l}\right]$. Let c_{i} be the i-th elementary symmetric polynomial in t_{i} 's, and also its

[^0]image in $H^{*}\left(B \widetilde{T}^{l}\right)$. Note that q is the $\bmod 2$ reduction of q^{\prime} and $\lambda_{l}{ }^{*}(q)=c_{2}$. Define elements $c_{5}^{\prime}, c_{7}^{\prime}$ and c_{9}^{\prime} by $c_{5}+c_{4} c_{1}, c_{7}+c_{6} c_{1}$ and $c_{8} c_{1}+c_{7} c_{1}^{2}+c_{6} c_{1}^{3}$, respectively.

The following facts are known ([2]).
(i) $H^{*}\left(B \widetilde{T}^{l}\right)=\boldsymbol{F}_{2}\left[t_{1}, t_{2}, \ldots, t_{l}, \gamma_{3}, \gamma_{5}, \gamma_{9}, \gamma_{17}, v_{2^{j}+1}\right.$

$$
(j \geq 5)] /\left(c_{2}, c_{3}, c_{5}^{\prime}, c_{9}^{\prime}\right)
$$

where $\operatorname{deg} \gamma_{i}=2 i, \operatorname{deg} v_{i}=i$, and $\widehat{\pi}_{l}^{*}\left(t_{i}\right)$ is written simply as t_{i} for short.
(ii) $H^{*}\left(B \widetilde{E}_{6}\right)=\boldsymbol{F}_{2}\left[y_{10}, y_{12}, y_{16}, y_{18}, y_{24}, y_{33}, y_{34}\right.$,

$$
\begin{aligned}
&\left.y_{2^{i}+1}(i \geq 6)\right] \\
& H^{*}\left(B \widetilde{E}_{7}\right)=\boldsymbol{F}_{2}\left[y_{12}, y_{16}, y_{20}, y_{24}, y_{28}, y_{33}, y_{34}\right. \\
&\left.y_{36}, y_{2^{i}+1}(i \geq 6)\right] \\
& H^{*}\left(B \widetilde{E}_{8}\right)=\boldsymbol{F}_{2}\left[y_{16}, y_{24}, y_{28}, y_{30}, y_{31}, y_{33}, y_{34}\right. \\
&\left.y_{36}, y_{40}, y_{48}, y_{2^{i}+1}(i \geq 6)\right]
\end{aligned}
$$

where $\operatorname{deg} y_{i}=i$.
(iii) If both $H^{*}\left(B \widetilde{E}_{l}\right)$ and $H^{*}\left(B \widetilde{E}_{l-1}\right)$ have a generator $y_{i}, \widetilde{\varphi}_{l}{ }^{*}\left(y_{i}\right)=y_{i}$. $\widetilde{\varphi}_{l}{ }^{*}\left(y_{i}\right)=0$ only when $i=30,31$ for $l=8$ or $i=28$ for $l=7$. All the precise values of $\widetilde{\varphi}_{l}{ }^{*}\left(y_{i}\right)$ are known ($c f$. (v)), and it is immediate to see that we obtain a regular sequence $\left(\widetilde{\varphi}_{l}{ }^{*}\left(y_{i}\right)\right)_{i}$ if we exclude $\widetilde{\varphi}_{l}{ }^{*}\left(y_{i}\right)$ which is null. Thus $\operatorname{Ker} \widetilde{\varphi}_{7}{ }^{*}=\left(y_{28}\right)$ and $\operatorname{Ker} \widetilde{\varphi}_{8}{ }^{*}=$ $\left(y_{30}, y_{31}\right)$.
(iv) $\widetilde{\lambda}_{l}^{*}\left(y_{i}\right)$ is non-zero and contained in $\left\langle t_{1}, \ldots, t_{l}\right\rangle$, only if $i=16,24,28,30$ when $l=8$, only if $i=16,24,28$ when $l=7$, and only if $i=$ 16,24 when $l=6$. $\widetilde{\lambda}_{l}{ }^{*}\left(y_{i}\right)=v_{i}$ if $i=2^{j}+$ 1 and $j \geq 5$, and $\widetilde{\lambda}_{8}{ }^{*}\left(y_{31}\right)=0 . \quad \tilde{\lambda}_{l}^{*}\left(y_{i}\right) \in$ $\left\langle t_{1}, \ldots, t_{l}, \gamma_{3}, \gamma_{5}, \gamma_{9}, \gamma_{17}\right\rangle$ in other cases. $\widetilde{\lambda}_{l}{ }^{*}\left(y_{i}\right)$ is also known completely and hence $\operatorname{Ker} \widetilde{\lambda}_{6}{ }^{*}=0$, $\operatorname{Ker} \widetilde{\lambda}_{7}{ }^{*}=0$, and $\operatorname{Ker} \widetilde{\lambda}_{8}{ }^{*}=\left(y_{31}\right)$.

Table I.

	$S q^{1}$	$S q^{2}$	$S q^{4}$	$S q^{8}$	$S q^{16}$	$S q^{32}$	$S q^{2^{i}}$
y_{16}	0	0	0	y_{24}	$y_{16}{ }^{2}$	0	0
y_{24}	0	0	y_{28}	0	$y_{24} y_{16}$	0	0
y_{28}	0	y_{30}	0	0	$y_{28} y_{16}$	0	
y_{30}	y_{31}	0	0	0	$y_{30} y_{16}$	y_{65}	
y_{31}	0	0	0	0	$y_{31} y_{16}$	$y_{36} y_{30}+y_{33}{ }^{2}$	
y_{33}	y_{34}	0	0	0	$y_{33} y_{16}$	$y_{40} y_{28}+y_{34}{ }^{2}$	$y_{48} y_{24}+y_{36}{ }^{2}$
y_{34}	0	y_{36}	0	0	$y_{34} y_{16}$	0	
y_{36}	0	0	y_{40}	0	$y_{36} y_{16}$	$y_{40} y_{16}$	0
y_{40}	0	0	0	y_{48}	0	$y_{48} y_{16}^{2}+y_{40}{ }^{2}+y_{40} y_{24} y_{16}$	
y_{48}	0	0	0	0	$y_{40} y_{24}+y_{36} y_{28}$	$+y_{34} y_{30}+y_{33} y_{31}$	$+y_{36} y_{28} y_{16}+y_{34} y_{30} y_{16}+y_{33} y_{31} y_{16}$
y_{12}	0	0	y_{16}	y_{20}	0	0	
y_{20}	0	0	$y_{12}{ }^{2}$	y_{28}	$y_{36}+y_{24} y_{12}+y_{20} y_{16}$	0	
y_{10}	0	y_{12}	0	y_{18}	0	0	
y_{18}	0	y_{10}	0	0	$y_{34}+y_{24} y_{10}+y_{18} y_{16}$	0	
$y_{2^{i}+1}$	0	0	0	0	0	0	

(v) The action of A^{*} on $H^{*}\left(B \widetilde{E}_{l}\right)$ satisfies Table I. and the fact $S q^{2^{j}} y_{2^{i}+1}=0(j<i)$.
In Table I $y_{30}=0, y_{40}=y_{28} y_{12}+y_{24} y_{16}+$ $y_{20}^{2}+y_{16} y_{12}^{2}$ for $l=7$, and $y_{20}=y_{10}^{2}, y_{28}=0$, $y_{36}=y_{24} y_{12}+y_{18}^{2}+y_{16} y_{10}^{2}$ for $l=6$. (The action and $\widetilde{\varphi}_{l}^{*}\left(y_{i}\right)$ are determined completely.)

Lemma 1. (i) $\operatorname{Ker} \widetilde{\varphi}_{7}^{*}=\left(y_{28}\right)$ and $\operatorname{Ker} \widetilde{\varphi}_{8}{ }^{*}=$ $\left(y_{30}, y_{31}\right)$.
(ii) $\operatorname{Ker} \widetilde{\lambda}_{6}{ }^{*}=0, \operatorname{Ker} \widetilde{\lambda}_{7}{ }^{*}=0$, and $\operatorname{Ker} \widetilde{\lambda}_{8}{ }^{*}=\left(y_{31}\right)$.
(iii) $\operatorname{Im} \pi_{6}{ }^{*} \subset \boldsymbol{F}_{2}\left[y_{16}, y_{24}\right], \operatorname{Im} \pi_{7}{ }^{*} \subset \boldsymbol{F}_{2}\left[y_{16}, y_{24}, y_{28}\right]$, and $\operatorname{Im} \pi_{8}{ }^{*} \subset \boldsymbol{F}_{2}\left[y_{16}, y_{24}, y_{28}, y_{30}\right] \oplus\left(y_{31}\right)$.

We show here a sketch of a proof of the last inclusion. First note that $\widetilde{\lambda}_{8}{ }^{*}\left(\operatorname{Im} \pi_{8}{ }^{*}\right) \subset \operatorname{Im} \widehat{\pi}_{8}{ }^{*} \cap$ $\operatorname{Im} \widetilde{\lambda}_{8}{ }^{*}=\left\langle t_{1}, \ldots, t_{8}\right\rangle \cap \operatorname{Im} \widetilde{\lambda}_{8}{ }^{*}$. Thus $\operatorname{Im} \pi_{8}{ }^{*}$ is contained in $\left\langle y_{16}, y_{24}, y_{28}, y_{30}\right\rangle \oplus \operatorname{Ker} \widetilde{\lambda}_{8}{ }^{*}$. Other inclusions are proved similarly.
3. Stiefel-Whitney class. Let $A d_{E_{l}}$ be the adjoint representation of E_{l}. It is known that the restriction of $A d_{E_{8}}$ to E_{7} satisfies $\left.A d_{E_{8}}\right|_{E_{7}}=A d_{E_{7}} \oplus$ $\lambda \oplus$ (3-dimensional trivial representation), where λ : $E_{7} \rightarrow U(56) \rightarrow O(112)$ is a representation. (Refer to Case 2 in page 52 of [1], for example.) From Corollary 4.6, Proposition 6.1 and Corollary 6.9 of [6], and from Proposition 2.11, Theorem 2.12 and Corollary 3.7 of [5] we deduce $H^{*}\left(B E_{7}\right)$ is generated by x_{4} and the Stiefel-Whitney class $w_{64}\left(A d_{E_{7}}\right)$ as an A^{*}-algebra, and also by x_{4} and $w_{64}(\lambda)$, where x_{4}
is the generator of degree 4. The A^{*}-subalgebra of $H^{*}\left(B E_{7}\right)$ generated by x_{4} has the trivial image in $H^{*}\left(B \widetilde{E}_{7}\right)$ via π_{7}^{*}, and also in $H^{*}\left(B \widetilde{T}^{7}\right)$. Note that by Wu formulae $\pi_{7}^{*}\left(w_{i}\left(A d_{E_{7}}\right)\right)=\pi_{7}^{*}\left(w_{i}(\lambda)\right)=0$, if $i \leq 63$ or $65 \leq i \leq 95$. A similar fact holds for $H^{*}\left(B E_{6}\right): H^{*}\left(B E_{6}\right)$ is generated by x_{4} and $w_{32}(\mu)$ as an A^{*}-algebra, where μ is a representation of E_{6} of degree 54. See Theorem 6.21 and Remark following it of [4].

Proposition 2. $\pi_{6}{ }^{*}\left(w_{32}(\mu)\right)=y_{16}{ }^{2}$, and $\pi_{7}^{*}\left(w_{64}\left(A d_{E_{7}}\right)\right)=\pi_{7}^{*}\left(w_{64}(\lambda)\right)=y_{16}{ }^{4}$.

We sketch a proof. Lemma 1 implies that $\pi_{6}{ }^{*}\left(w_{32}(\mu)\right)=\alpha y_{16}{ }^{2}$, where α is a scalar. Since $H^{*}\left(B T^{6}\right)$ is a finite $H^{*}\left(B E_{6}\right)$-module, $\widehat{\pi}_{6}{ }^{*}\left(H^{*}\left(B T^{6}\right)\right)$ is also finite. If $\alpha=0$, the image $\pi_{6}{ }^{*}\left(H^{*}\left(B E_{6}\right)\right)$ is trivial, and so in $H^{*}\left(B \widetilde{T}^{6}\right)$. This is a contradiction, and therefore $\pi_{6}{ }^{*}\left(w_{32}(\mu)\right)=y_{16}{ }^{2}$.

In the case of $H^{*}\left(B \widetilde{E}_{7}\right), \pi_{7}^{*}\left(w_{64}(\lambda)\right)$ is expressed in the form $\alpha y_{16}{ }^{4}+\beta y_{24}{ }^{2} y_{16}\left(\alpha, \beta \in \boldsymbol{F}_{2}\right)$ by Lemma 1. Applying $S q^{8}$, we conclude $\beta=0$ since $\pi_{7}^{*}\left(w_{i}(\lambda)\right)=$ 0 when $65 \leq i \leq 95$. If $\alpha=0$, we can show a contradiction like the case of $H^{*}\left(B \widetilde{E}_{6}\right)$. By arguing similarly for $\pi_{7}^{*}\left(w_{64}\left(A d_{E_{7}}\right)\right)$ in addition, we obtain the result, and hence Proposition 3 below by Wu formulae.

Proposition 3. $\operatorname{Im} \pi_{6}{ }^{*}=\boldsymbol{F}_{2}\left[y_{16}{ }^{2}, y_{24}{ }^{2}\right]$ and $\operatorname{Im} \pi_{7}{ }^{*}=\boldsymbol{F}_{2}\left[y_{16}{ }^{4}, y_{24}{ }^{4}, y_{28}{ }^{4}\right]$. Therefore $\operatorname{Im} \pi_{8}{ }^{*} \subset$
$\boldsymbol{F}_{2}\left[y_{16}{ }^{4}, y_{24}{ }^{4}, y_{28}{ }^{4}\right] \oplus y_{30} \cdot \boldsymbol{F}_{2}\left[y_{16}, y_{24}, y_{28}\right] \oplus\left(y_{31}\right)$.
Thus $\widetilde{\varphi}_{8}{ }^{*}\left(\pi_{8}{ }^{*}\left(w_{2^{i}}\left(A d_{E_{8}}\right)\right)\right)=0$ by the decomposition of $\left.A d_{E_{8}}\right|_{E_{7}}$, if $i \leq 6$. By Lemma 1 $\pi_{8}{ }^{*}\left(w_{2^{i}}\left(A d_{E_{8}}\right)\right)=0$ if $i \leq 5$, and $\pi_{8}{ }^{*}\left(w_{64}\left(A d_{E_{8}}\right)\right)=$ $\alpha y_{31} y_{33}$, where α is a scalar. Applying $S q^{1}$ we conclude $\alpha=0$. Now $\pi_{8}{ }^{*}\left(w_{128}\left(A d_{E_{8}}\right)\right)$ is computed in a manner similar to the proof of Proposition 2. For this computation, note that $\lambda_{7}^{*}\left(w_{128}\left(A d_{E_{7}}\right)\right)=$ 0 , which is obtained by decomposition $\left.A d_{E_{7}}\right|_{T^{7}}=$ $\nu \oplus$ (7-dimensional trivial representation) because of the root space decomposition, where ν is a representation of T^{7} of dimension 126. This ensures that $\pi_{7}^{*}\left(w_{128}\left(A d_{E_{7}}\right)\right)=0$ by Lemma 1 .

Theorem 4. $\pi_{8}{ }^{*}\left(w_{2^{i}}\left(A d_{E_{8}}\right)\right)=0$ for $i \leq 6$, and $\pi_{8}{ }^{*}\left(w_{128}\left(A d_{E_{8}}\right)\right)=y_{16}{ }^{8}$.

Corollary 5. $\quad \boldsymbol{F}_{2}\left[y_{16}{ }^{8}, y_{24}{ }^{8}, y_{28}{ }^{8}, y_{30}{ }^{8}, y_{31}{ }^{8}\right] \subset$ $\operatorname{Im} \pi_{8^{*}} \subset \boldsymbol{F}_{2}\left[y_{16}{ }^{8}, y_{24}{ }^{8}, y_{28}{ }^{8}, y_{30}{ }^{8}, y_{31}{ }^{8}\right]+Q$, where $Q \subset$ $y_{30} \cdot \boldsymbol{F}_{2}\left[y_{16}, y_{24}, y_{28}\right] \oplus\left(y_{31}\right)$.

References

[1] Adams, J. F.: Lectures on Exceptional Lie Groups. Chicago Lectures in Mathematics (eds. Mahmud, Z., and Mimura, M.). University of Chicago Press, Chicago, IL (1996).
[2] Ishitoya, K., and Kono, A.: Squaring operations in the 4 -connective fibre spaces over the classifying spaces of the exceptional Lie groups. Publ. RIMS Kyoto Univ., 21, 1299-1310 (1985).
[3] Kachi, H.: Homotopy groups of compact Lie groups E_{6}, E_{7}, and E_{8}. Nagoya J. Math., 32, 109-139 (1968).
[4] Kono, A., and Mimura, M.: Cohomology mod 2 of the classifying space of the compact connected Lie group of type E_{6}. J. Pure and Applied Alg., 6, 61-81 (1975).
[5] Kono, A., and Mimura, M.: On the cohomology $\bmod 2$ of the classifying space of $A d E_{7}$. J. Math. Kyoto Univ., 18, 535-541 (1978).
[6] Kono, A., Mimura, M., and Shimada, N.: On the cohomology mod 2 of the classifying space of the 1-connected exceptional Lie group E_{7}. J. Pure and Applied Alg., 8, 267-283 (1976).

[^0]: 2000 Mathematics Subject Classification. 55R40.

