On the Stiefel-Whitney class of the adjoint representation of E_8

By Akihiro Ohsita

Faculty of Human Sciences, Osaka University of Economics 2-2-8, Osumi, Higashiyodogawa-ku, Osaka 533-8533
(Communicated by Shigefumi MORI, M. J. A., Oct. 12, 2004)

Abstract: Let E_8 be the 3-connected covering space of the 1-connected, compact exceptional group E_8 , which is regarded as the loop space of the homotopy fibre $B\tilde{E}_8$ of a map from BE_8 , the classifying space of E_8 , to an Eilenberg-MacLane space. The Stiefel-Whitney classes of the adjoint representation of E_8 induce elements of the mod 2 cohomology of $B\tilde{E}_8$. These images are computed.

Key words: Stiefel-Whitney class; classifying space; exceptional Lie group; adjoint representation.

1. Introduction. Let E_l be the 1-connected compact exceptional Lie group of type E_l , where l is the rank. Let \tilde{E}_l be the 3-connected covering space of E_l . The cohomology modulo 2 of the classifying space of E_8 is not determined, but that of \tilde{E}_8 , $H^*(B\tilde{E}_8)$, is done. Refer to [3] for it and also [2] for the action of A^* , the mod 2 Steenrod algebra. We need data to compute $H^*(BE_8)$ with spectral sequences. Our main result is Theorem 4, which states the image of the Stiefel-Whitney class of the adjoint representation of E_8 in $H^*(B\tilde{E}_8)$. Detailed proofs will be found in another paper.

Throughout this paper $H^*(X)$ denotes the mod 2 cohomology ring of a space X. If S is a non-empty subset of an algebra, $\langle S \rangle$ denotes the subalgebra generated by S.

2. Cohomology of the classifying space of 3-connected cover. Let T^l be a maximal torus of E_l and q' a generator of $H^4(BE_l; \mathbb{Z})$. Let $\pi_l, \hat{\pi}_l, \lambda_l,$ $\tilde{\lambda}_l, \varphi_l$ and $\tilde{\varphi}_l$ denote the natural maps such that the following diagrams are commutative, where the rows are fibrations in the left one.

$$\begin{array}{cccc} B\tilde{T}^{l} & \xrightarrow{\pi_{l}} & BT^{l} \longrightarrow K(\mathbf{Z}, 4) \\ \tilde{\lambda}_{l} & & \lambda_{l} \\ B\tilde{E}_{l} & \xrightarrow{\pi_{l}} & BE_{l} \xrightarrow{q'} & K(\mathbf{Z}, 4) \end{array} & \begin{array}{c} B\tilde{E}_{l-1} & \xrightarrow{\pi_{l-1}} & BE_{l-1} \\ \tilde{\varphi}_{l} & & \varphi_{l} \\ B\tilde{E}_{l} & \xrightarrow{\pi_{l}} & BE_{l} \xrightarrow{q'} & K(\mathbf{Z}, 4) \end{array}$$

Since $H^4(BE_l; \mathbf{Z}) \cong \mathbf{Z}$ and BE_l is 3-connected, there is a unique non-zero element q in $H^4(BE_l)$. Let $H^*(BT^l) \cong \mathbf{F}_2[t_1, t_2, \ldots, t_l]$. Let c_i be the *i*-th elementary symmetric polynomial in t_i 's, and also its image in $H^*(B\widetilde{T}^l)$. Note that q is the mod 2 reduction of q' and $\lambda_l^*(q) = c_2$. Define elements c'_5, c'_7 and c'_9 by $c_5 + c_4c_1, c_7 + c_6c_1$ and $c_8c_1 + c_7c_1^2 + c_6c_1^3$, respectively.

The following facts are known ([2]).

(i) $H^*(B\widetilde{T}^l) = \mathbf{F}_2[t_1, t_2, \dots, t_l, \gamma_3, \gamma_5, \gamma_9, \gamma_{17}, v_{2^j+1} (j \ge 5)]/(c_2, c_3, c'_5, c'_9),$ where deg $\gamma_i = 2i$, deg $v_i = i$, and $\widehat{\pi}_l^*(t_i)$ is written simply as t_i for short.

(ii)
$$H^*(BE_6) = \mathbf{F}_2[y_{10}, y_{12}, y_{16}, y_{18}, y_{24}, y_{33}, y_{34}, y_{2^{i+1}} \ (i \ge 6)],$$

 $H^*(B\widetilde{E}_7) = \mathbf{F}_2[y_{12}, y_{16}, y_{20}, y_{24}, y_{28}, y_{33}, y_{34}, y_{36}, y_{2^{i+1}} \ (i \ge 6)],$

$$H^*(B\widetilde{E}_8) = \mathbf{F}_2[y_{16}, y_{24}, y_{28}, y_{30}, y_{31}, y_{33}, y_{34}, y_{36}, y_{40}, y_{48}, y_{2^i+1} \ (i \ge 6)].$$

where deg $y_i = i$.

- (iii) If both $H^*(B\tilde{E}_l)$ and $H^*(B\tilde{E}_{l-1})$ have a generator y_i , $\tilde{\varphi}_l^*(y_i) = y_i$. $\tilde{\varphi}_l^*(y_i) = 0$ only when i = 30, 31 for l = 8 or i = 28 for l = 7. All the precise values of $\tilde{\varphi}_l^*(y_i)$ are known (cf. (v)), and it is immediate to see that we obtain a regular sequence $(\tilde{\varphi}_l^*(y_i))_i$ if we exclude $\tilde{\varphi}_l^*(y_i)$ which is null. Thus Ker $\tilde{\varphi}_7^* = (y_{28})$ and Ker $\tilde{\varphi}_8^* = (y_{30}, y_{31})$.
- (iv) $\lambda_l^*(y_i)$ is non-zero and contained in $\langle t_1, \ldots, t_l \rangle$, only if i = 16, 24, 28, 30 when l = 8, only if i = 16, 24, 28 when l = 7, and only if i = 16, 24 when l = 6. $\lambda_l^*(y_i) = v_i$ if $i = 2^j + 1$ and $j \geq 5$, and $\lambda_8^*(y_{31}) = 0$. $\lambda_l^*(y_i) \in \langle t_1, \ldots, t_l, \gamma_3, \gamma_5, \gamma_9, \gamma_{17} \rangle$ in other cases. $\lambda_l^*(y_i)$ is also known completely and hence Ker $\lambda_6^* = 0$, Ker $\lambda_7^* = 0$, and Ker $\lambda_8^* = (y_{31})$.

²⁰⁰⁰ Mathematics Subject Classification. 55R40.

A. Ohsita

m 1 1		т
Tabl		
Lan	LC.	т.

	Sq^1	Sq^2	Sq^4	Sq^8	Sq^{16}	Sq^{32}	$Sq^{2^{i}}$
y_{16}	0	0	0	y_{24}	y_{16}^{2}	0	
y_{24}	0	0	y_{28}	0	$y_{24}y_{16}$	0	
y_{28}	0	y_{30}	0	0	$y_{28}y_{16}$	0	
y_{30}	y_{31}	0	0	0	$y_{30}y_{16}$	0	
y_{31}	0	0	0	0	$y_{31}y_{16}$	0	
y_{33}	y_{34}	0	0	0	$y_{33}y_{16}$	y_{65}	
y_{34}	0	y_{36}	0	0	$y_{34}y_{16}$	$y_{36}y_{30} + {y_{33}}^2$	
y_{36}	0	0	y_{40}	0	$y_{36}y_{16}$	$y_{40}y_{28} + y_{34}^2$	
y_{40}	0	0	0	y_{48}	$y_{40}y_{16}$	$y_{48}y_{24} + {y_{36}}^2$	
y_{48}	0	0	0	0	$\begin{array}{l}y_{40}y_{24}+y_{36}y_{28}\\+y_{34}y_{30}+y_{33}y_{31}\end{array}$	$\begin{array}{l}y_{48}{y_{16}}^2+{y_{40}}^2+{y_{40}}{y_{24}}{y_{16}}\\+{y_{36}}{y_{28}}{y_{16}}+{y_{34}}{y_{30}}{y_{16}}+{y_{33}}{y_{31}}{y_{16}}\end{array}$	
y_{12}	0	0	y_{16}	y_{20}	0	0	
y_{20}	0	0	y_{12}^2	y_{28}	$y_{36} + y_{24}y_{12} + y_{20}y_{16}$	0	
y_{10}	0	y_{12}	0	y_{18}	0	0	
y_{18}	0	y_{10}^{2}	0	0	$y_{34} + y_{24}y_{10} + y_{18}y_{16}$	0	
$y_{2^{i}+1}$	0	0	0	0	0	$0 \ (i \ge 6)$	$y_{2^{i+1}+1}$

(v) The action of A^* on $H^*(B\tilde{E}_l)$ satisfies Table I. and the fact $Sq^{2^j}y_{2^i+1} = 0$ (j < i).

In Table I $y_{30} = 0$, $y_{40} = y_{28}y_{12} + y_{24}y_{16} + y_{20}^2 + y_{16}y_{12}^2$ for l = 7, and $y_{20} = y_{10}^2$, $y_{28} = 0$, $y_{36} = y_{24}y_{12} + y_{18}^2 + y_{16}y_{10}^2$ for l = 6. (The action and $\tilde{\varphi}_l^*(y_i)$ are determined completely.)

Lemma 1. (i) Ker $\tilde{\varphi}_7^* = (y_{28})$ and Ker $\tilde{\varphi}_8^* = (y_{30}, y_{31})$.

(ii) Ker $\widetilde{\lambda}_6^* = 0$, Ker $\widetilde{\lambda}_7^* = 0$, and Ker $\widetilde{\lambda}_8^* = (y_{31})$. (iii) Im $\pi_6^* \subset \mathbf{F}_2[y_{16}, y_{24}]$, Im $\pi_7^* \subset \mathbf{F}_2[y_{16}, y_{24}, y_{28}]$, and Im $\pi_8^* \subset \mathbf{F}_2[y_{16}, y_{24}, y_{28}, y_{30}] \oplus (y_{31})$.

We show here a sketch of a proof of the last inclusion. First note that $\widetilde{\lambda}_8^*(\operatorname{Im} \pi_8^*) \subset \operatorname{Im} \widehat{\pi}_8^* \cap \operatorname{Im} \widetilde{\lambda}_8^* = \langle t_1, \ldots, t_8 \rangle \cap \operatorname{Im} \widetilde{\lambda}_8^*$. Thus $\operatorname{Im} \pi_8^*$ is contained in $\langle y_{16}, y_{24}, y_{28}, y_{30} \rangle \oplus \operatorname{Ker} \widetilde{\lambda}_8^*$. Other inclusions are proved similarly.

3. Stiefel-Whitney class. Let Ad_{E_l} be the adjoint representation of E_l . It is known that the restriction of Ad_{E_8} to E_7 satisfies $Ad_{E_8}|_{E_7} = Ad_{E_7} \oplus \lambda \oplus$ (3-dimensional trivial representation), where $\lambda : E_7 \to U(56) \to O(112)$ is a representation. (Refer to Case 2 in page 52 of [1], for example.) From Corollary 4.6, Proposition 6.1 and Corollary 6.9 of [6], and from Proposition 2.11, Theorem 2.12 and Corollary 3.7 of [5] we deduce $H^*(BE_7)$ is generated by x_4 and the Stiefel-Whitney class $w_{64}(Ad_{E_7})$ as an A^* -algebra, and also by x_4 and $w_{64}(\lambda)$, where x_4

is the generator of degree 4. The A^* -subalgebra of $H^*(BE_7)$ generated by x_4 has the trivial image in $H^*(B\widetilde{E}_7)$ via π_7^* , and also in $H^*(B\widetilde{T}^7)$. Note that by Wu formulae $\pi_7^*(w_i(Ad_{E_7})) = \pi_7^*(w_i(\lambda)) = 0$, if $i \leq 63$ or $65 \leq i \leq 95$. A similar fact holds for $H^*(BE_6)$: $H^*(BE_6)$ is generated by x_4 and $w_{32}(\mu)$ as an A^* -algebra, where μ is a representation of E_6 of degree 54. See Theorem 6.21 and Remark following it of [4].

Proposition 2. $\pi_6^*(w_{32}(\mu)) = y_{16}^2$, and $\pi_7^*(w_{64}(Ad_{E_7})) = \pi_7^*(w_{64}(\lambda)) = y_{16}^4$.

We sketch a proof. Lemma 1 implies that $\pi_6^*(w_{32}(\mu)) = \alpha y_{16}^2$, where α is a scalar. Since $H^*(BT^6)$ is a finite $H^*(BE_6)$ -module, $\hat{\pi}_6^*(H^*(BT^6))$ is also finite. If $\alpha = 0$, the image $\pi_6^*(H^*(BE_6))$ is trivial, and so in $H^*(B\widetilde{T}^6)$. This is a contradiction, and therefore $\pi_6^*(w_{32}(\mu)) = y_{16}^2$.

In the case of $H^*(B\widetilde{E}_7)$, $\pi_7^*(w_{64}(\lambda))$ is expressed in the form $\alpha y_{16}^4 + \beta y_{24}^2 y_{16}$ $(\alpha, \beta \in \mathbf{F}_2)$ by Lemma 1. Applying Sq^8 , we conclude $\beta = 0$ since $\pi_7^*(w_i(\lambda)) =$ 0 when $65 \leq i \leq 95$. If $\alpha = 0$, we can show a contradiction like the case of $H^*(B\widetilde{E}_6)$. By arguing similarly for $\pi_7^*(w_{64}(Ad_{E_7}))$ in addition, we obtain the result, and hence Proposition 3 below by Wu formulae.

Proposition 3. Im $\pi_6^* = F_2[y_{16}^2, y_{24}^2]$ and Im $\pi_7^* = F_2[y_{16}^4, y_{24}^4, y_{28}^4]$. Therefore Im $\pi_8^* \subset$

 $F_{2}[y_{16}^{4}, y_{24}^{4}, y_{28}^{4}] \oplus y_{30} \cdot F_{2}[y_{16}, y_{24}, y_{28}] \oplus (y_{31}).$

Thus $\tilde{\varphi}_8^*(\pi_8^*(w_{2^i}(Ad_{E_8}))) = 0$ by the decomposition of $Ad_{E_8}|_{E_7}$, if $i \leq 6$. By Lemma 1 $\pi_8^*(w_{2^i}(Ad_{E_8})) = 0$ if $i \leq 5$, and $\pi_8^*(w_{64}(Ad_{E_8})) = \alpha y_{31}y_{33}$, where α is a scalar. Applying Sq^1 we conclude $\alpha = 0$. Now $\pi_8^*(w_{128}(Ad_{E_8}))$ is computed in a manner similar to the proof of Proposition 2. For this computation, note that $\lambda_7^*(w_{128}(Ad_{E_7})) = 0$, which is obtained by decomposition $Ad_{E_7}|_{T^7} = \nu \oplus$ (7-dimensional trivial representation) because of the root space decomposition, where ν is a representation of T^7 of dimension 126. This ensures that $\pi_7^*(w_{128}(Ad_{E_7})) = 0$ by Lemma 1.

Theorem 4. $\pi_8^*(w_{2i}(Ad_{E_8})) = 0$ for $i \le 6$, and $\pi_8^*(w_{128}(Ad_{E_8})) = y_{16}^8$.

Corollary 5. $F_2[y_{16}^8, y_{24}^8, y_{28}^8, y_{30}^8, y_{31}^8] \subset$ Im $\pi_8^* \subset F_2[y_{16}^8, y_{24}^8, y_{28}^8, y_{30}^8, y_{31}^8] + Q$, where $Q \subset$ $y_{30} \cdot F_2[y_{16}, y_{24}, y_{28}] \oplus (y_{31}).$

References

 Adams, J. F.: Lectures on Exceptional Lie Groups. Chicago Lectures in Mathematics (eds. Mahmud, Z., and Mimura, M.). University of Chicago Press, Chicago, IL (1996).

- [2] Ishitoya, K., and Kono, A.: Squaring operations in the 4-connective fibre spaces over the classifying spaces of the exceptional Lie groups. Publ. RIMS Kyoto Univ., 21, 1299–1310 (1985).
- $\begin{bmatrix} 3 \end{bmatrix}$ Kachi, H.: Homotopy groups of compact Lie groups E_6 , E_7 , and E_8 . Nagoya J. Math., **32**, 109–139 (1968).
- [4] Kono, A., and Mimura, M.: Cohomology mod 2 of the classifying space of the compact connected Lie group of type E₆. J. Pure and Applied Alg., 6, 61–81 (1975).
- [5] Kono, A., and Mimura, M.: On the cohomology mod 2 of the classifying space of AdE₇. J. Math. Kyoto Univ., **18**, 535–541 (1978).
- [6] Kono, A., Mimura, M., and Shimada, N.: On the cohomology mod 2 of the classifying space of the 1-connected exceptional Lie group E₇. J. Pure and Applied Alg., 8, 267–283 (1976).

No. 8]