On class number formula for the real quadratic fields

By Hiroki Sato
Department of Mathematics, Graduate School of Science, Tokyo University of Science
26, Wakamiya-cho, Shinjuku-ku, Tokyo 162-8601
(Communicated by Shigefumi Mori, M. J. A., Sept. 13, 2004)

Abstract

Let $k>1$ be the fundamental discriminant, and let $\chi(n), \varepsilon$ and h be the real primitive character modulo k, the fundamental unit and the class number of the real quadratic field $\mathbf{Q}(\sqrt{k})$, respectively. And let $[x]$ denote the greatest integer not greater than x.

In [3], M.-G. Leu showed $h=\left[\sqrt{k} /(2 \log \varepsilon) \sum_{n=1}^{k} \chi(n) / n\right]+1$ for all k, and $h=$ $\left[\sqrt{k} /(2 \log \varepsilon) \sum_{n=1}^{[k / 2]} \chi(n) / n\right]$ in the case $k \neq m^{2}+4$ with $m \in \mathbf{Z}$.

In this paper we will show $h=\left[\sqrt{k} /(2 \log \varepsilon) \sum_{n=1}^{[k / 2]} \chi(n) / n\right]$ for all fundamental discriminants $k>1$.

Key words: Class number; real quadratic fields.

1. Introduction. In this paper let $k>1$ be the fundamental discriminant, and let $\chi(n), \varepsilon$ and h be the real primitive character modulo k, the fundamental unit and the class number of the real quadratic field $\mathbf{Q}(\sqrt{k})$ respectively, and $[x]$ denotes the greatest integer not greater than x.

The purpose of this paper is to show the following theorem:

Theorem 1. We have

$$
h=\left[\frac{\sqrt{k}}{2 \log \varepsilon} \sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}\right]
$$

We start the proof of Theorem 1 from the inequality in [3]

$$
\sum_{n=1}^{k} \frac{\chi(n)}{n}<L(1, \chi)<\sum_{n=1}^{[k / 2]} \frac{\chi(n)}{n}
$$

If the inequality

$$
\left|\frac{\sqrt{k}}{2 \log \varepsilon} \sum_{n=[k / 2]+1}^{k} \chi(n) / n\right|<1
$$

holds, then the theorem is proved. Therefore we shall show this inequality.

Now we need the following lemmas:
Lemma 2 (Abel's identity). For any arithmetical function a n), let

2000 Mathematics Subject Classification. Primary 11R11; Secondary 11M06.

$$
A(x)=\sum_{n \leq x} a(n)
$$

where $A(x)=0$ if $x<1$. Assume f has a continuous derivative on the interval $[y, x]$, where $0<y<x$. Then we have

$$
\begin{aligned}
& \sum_{y<n \leq x} a(n) f(n) \\
& \quad=A(x) f(x)-A(y) f(y)-\int_{y}^{x} A(t) f^{\prime}(t) d t
\end{aligned}
$$

Lemma 3 (Pólya's inequality).

$$
\left|\sum_{n \leq x} \chi(n)\right| \leq \sqrt{k} \log k
$$

for any primitive character $\chi(n)$ modulo k and all real number $x>1$.

Proofs of Lemmas 2 and 3 are found in [1].
If $k \neq m^{2}+4$ for any integer m, then the following fact is known.

Proposition 4. Let $k>1$ be the fundamental discriminant, $\chi(n)$ be the real primitive character modulo k, ε and h be the fundamental unit and the class number of the real quadratic field $\mathbf{Q}(\sqrt{k})$. And let $[x]$ denote the greatest integer not greater than x. Then we have followings:

$$
\begin{equation*}
h=\left[\frac{\sqrt{k}}{2 \log \varepsilon} \sum_{n=1}^{k} \frac{\chi(n)}{n}\right]+1 . \tag{1}
\end{equation*}
$$

(2) For the fundamental discriminant k such that $\sqrt{k-4} \notin \mathbf{Z}$,

$$
h=\left[\frac{\sqrt{k}}{2 \log \varepsilon} \sum_{n=1}^{[k / 2]} \frac{\chi(n)}{n}\right] .
$$

Proof of this proposition is seen in [3, Corollary 2 of Theorem 4].
2. Proof of Theorem 1. By Proposition 4, we shall prove the theorem for fundamental discriminant $k=m^{2}+4$, where m is an integer. In this case, since $\varepsilon=(m+\sqrt{k}) / 2<\sqrt{k}$, we must estimate $\sum_{n=[k / 2]+1}^{k} \chi(n) / n$ and ε a little tighter.

Let $A(t)=\sum_{n=1}^{[t]} \chi(n)$ and using Lemmas 2 and 3 ,

$$
\begin{aligned}
\left|\sum_{n=[k / 2]+1}^{k} \frac{\chi(n)}{n}\right| & =\left|\int_{k / 2}^{k-1} \frac{A(t)}{t^{2}} d t\right| \\
& \leq \sqrt{k} \log k \int_{k / 2}^{k-1} \frac{1}{t^{2}} d t \\
& =\frac{(k-2) \log k}{\sqrt{k}(k-1)}
\end{aligned}
$$

Therefore

$$
\left|\frac{\sqrt{k}}{2 \log \varepsilon} \sum_{n=\left[\frac{k}{2}\right]+1}^{k} \frac{\chi(n)}{n}\right| \leq \frac{k-2}{k-1} \cdot \frac{\log k}{2 \log \varepsilon} .
$$

And

$$
\begin{aligned}
\varepsilon^{2} & =\frac{(k-2)+\sqrt{k(k-4)}}{2} \\
& >\frac{(k-2)+(k-4)}{2} \\
& =k-3
\end{aligned}
$$

Hence

$$
\frac{k-2}{k-1} \cdot \frac{\log k}{2 \log \varepsilon}<\frac{k-2}{k-1} \cdot \frac{\log k}{\log (k-3)}
$$

Now we define a function $f(x)$ by

$$
f(x)=(x-1) \log (x-3)-(x-2) \log x
$$

for $x>3$. Then we have

$$
\begin{aligned}
f^{\prime}(x) & =\log (x-3)-\log x+\frac{2}{x-3}+\frac{2}{x} \\
f^{\prime \prime}(x) & =\frac{1}{x-3}-\frac{1}{x}-\frac{2}{(x-3)^{2}}-\frac{2}{x^{2}} \\
& =\frac{-x^{2}+3 x-18}{x^{2}(x-3)^{2}}<0,
\end{aligned}
$$

and $f^{\prime}(4)=5 / 2-2 \log 2>0 . f^{\prime}(x) \searrow 0$ implies $f^{\prime}(x)>0$, that is, $f(x)$ is monotone increasing for $x \geq 4$.

Next,

$$
\begin{aligned}
f(24) & =23 \log 21-22 \log 24 \\
& =\log \frac{3 \cdot 7^{23}}{8^{22}} \\
& =\log \frac{82106242020242749029}{73786976294838206464} \\
& >0 .
\end{aligned}
$$

Therefore $(k-2) /(k-1) \cdot(\log k) /(\log (k-3))<1$ for $k \geq 24$.

One can easily verify the statement for $k=5,8$, and 13.

By this theorem, we see $i=0$ for all discriminant $k=m^{2}+4$ in [3, Corollary 3 of Theorem 4].

Lemma 5. If the discriminant of a field contains only one prime factor, then the class number of the field is odd.

Proof is found in [2].
By Theorem 1 and Lemma 5, the class number h of the real quadratic field $\mathbf{Q}(\sqrt{p})$ is odd for a prime $p \equiv 1(\bmod 4)$. Therefore we have the following corollary again ([3, Corollary 1 of Theorem 4]).

Corollary 6. For a prime $p \equiv 1(\bmod 4)$, the followings are equivalent:
(1) The class number of the real quadratic field $\mathbf{Q}(\sqrt{p})$ is one;

$$
\begin{gather*}
\frac{\sqrt{p}}{2 \log \varepsilon} \sum_{n=1}^{p} \frac{\chi(n)}{n}<1 \tag{2}\\
\frac{\sqrt{p}}{2 \log \varepsilon} \sum_{n=1}^{(p-1) / 2} \frac{\chi(n)}{n}<3 . \tag{3}
\end{gather*}
$$

Acknowledgement. The author would like to thank professor I. Yamaguchi for giving him a lot of advices, and would like to thank the referee for for his comments which simplified his first manuscript.

References

[1] Apostol, T. M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer-Verlag, New York-Berlin-HeidelbergTokyo (1976).
[2] Cohn, H.: Advanced Number Theory. Dover Books on Advanced Mathematics. Dover, New York (1980).
[3] Leu, M.-G.: On $L(1, \chi)$ and class number formula for the real quadratic fields. Proc. Japan Acad., 72A, 69-74 (1996).

