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Solutions of a pair of differential equations and their applications
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Abstract: In this paper, we consider the common solutions of a pair of differential equa-
tions and give some of their applications in the uniqueness problems of entire functions.
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1. Introduction. In the study of the solu-
tions of complex differential equations, the growth
of a solution is a very important property. For linear
differential equations of the form

(1) f(n) + an−1(z)f(n−1) + · · ·+ a0(z)f = a(z),

where a(z), a0(z), . . . , an−1(z) are polynomials, it is
known that any entire solution of (1) must be of finite
order, and if some of the coefficients aj(z) (0 ≤ j ≤
n−1) are replaced by transcendental entire functions,
then the equation (1) has at least one solution of
infinite order. This can be proved by mainly using
the Wiman-Valiron theory (see [3, 4, 6]).

It is assumed that the reader is familiar with the
standard symbols and fundamental results of Nevan-
linna theory (see [2, 12]), and we say that two entire
functions f and g share a finite value a CM (counting
multiplicities), if f−a and g−a have the same zeros
with the same multiplicities. In 1998, Gundersen [1]
and Yang [1, 9] proved that every solutions of the
differential equation

F (n) − eα(z)F = 1

is of infinite order, where α(z) is a nonconstant entire
functions. And so they proved.

Theorem A [1]. Let f be a nonconstant entire
function of finite order, let a �= 0 be a finite constant,
and let n be a positive integer. If the value a is shared
by f, f(n), and f(n+1) CM, then f ≡ f ′.

In this paper, by using the Nevanlinna theory
(see [2, 12]), we consider the common solutions of a
pair of differential equations

f(n) + an−1(z)f(n−1) + · · ·+ a0(z)f = a(z),
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f(n+1) + bn(z)f(n) + · · ·+ b0(z)f = b(z),

with some special entire coefficients {ai(z)} and
{bj(z)}, and give some of their applications in the
uniqueness theory of meromorphic functions.

2. Preliminary lemmas.
Lemma 1. Let f be an entire function, a �= 0

be a constant. If f, f(n) and f(n+1) share the value
a CM, and if there exists a constant c �= 0 such that
f satisfies one of the following differential equations:

i) f(n+1) − a = c(f(n) − a),
ii) f(n) − a = c(f − a),
iii) f(n+1) − a = c(f − a),
iv) f(n+1) = f(n),

then f ≡ f ′, and so f = Aez for an arbitrary con-
stant A �= 0.

Proof. If f satisfies one of the differential equa-
tions i)–iv), then we know that f must be of finite
order, [4]. By Theorem A, we have f ≡ f ′. This
completes the proof of Lemma 1.

Lemma 2. Let f be a common entire solution
of a pair of differential equations

f(n) − 1
f − 1

= eα,
f(n+1) − 1
f − 1

= eβ,

where α and β (�≡ α) are nonconstant entire func-
tions, then

T (r, eα) + T (r, eβ) = S(r, f).

Proof. From the conditions of Lemma 2, we
know that f , f(n), and f(n+1) share 1 CM. Set

A(z) =
f(n+1) − f(n)

f − 1
, B(z) =

f(n+1) − 1
f(n) − 1

.

Then A(z) �≡ 0 and B(z) are entire functions and

T (r, A) = S(r, f).

By the second fundamental theorem of Nevanlinna
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theory, we have

T (r, B) ≤ N(r, B) +N
(
r,

1
B

)

+N
(
r,

1
B − 1

)
+ S(r, B)

≤ N
(
r,

1
A

)
+ S(r, B) = S(r, f).

Noticing that eα = A/(B− 1) and eβ = Beα, we get

T (r, eα) = S(r, f) and T (r, eβ) = S(r, f).

Lemma 2 is thus proved.
By the same reasoning, we have
Lemma 3. Let f be a common entire solution

of a pair of differential equations

f(n) − 1
f − 1

= eα,
f ′ − 1
f − 1

= eβ ,

where α and β are nonconstant entire functions, then

T (r, eα) + T (r, eβ) = S(r, f).

Lemma 4 [7]. Let g(z) be a nonconstant
meromorphic function, let n be a positive integer,
and set

P (z) = a0g
n + a1g

n−1 + · · ·+ an−1g + an,

where a0 �≡ 0 and ai (i = 1, 2, . . . , n) are meromor-
phic functions satisfying

T (r, ai) = S(r, g), i = 0, 1, . . . , n.

Then

T (r, P ) = nT (r, g) + S(r, g).

3. Solutions of a pair of differential equa-
tions.

Theorem 1. Let α(z) and β(z) are noncon-
stant entire functions such that eα(z)−β(z) �≡ 1. Then
the following pair of differential equations

(2) f(n) − eα(z)f = 1, f(n+1) − eβ(z)f = 1

has no common solutions.
Proof. Suppose that the pair of equation (2)

has a solution F , then F (z) must be a nonconstant
entire function which satisfies

(3) F (n) − eα(z)F = 1, F (n+1) − eβ(z)F = 1.

By differentiating the first equation and combining
with the second equation of (3), we obtain

F ′eα + Feαα′ = eβF + 1.

Let p = e−α, G = eβ−α −α′. Then F ′ = GF +p and

F ′′ = F (G2 +G′) +Gp+ p′.

Now we assume that

F (k) = F (Gk +Hk−1) + pHk−1 + p′Hk−2

+ · · ·+ p(k−2)H1 + p(k−1),

where Hj is a differential polynomial of G of degree
j (j ≥ 1), then

F (k+1) = F ′(Gk +Hk−1) + F (kGk−1G′ +H ′
k−1)

+ p′Hk−1 + pH ′
k−1

+ p′′Hk−2 + p′H ′
k−2

+ p′′′Hk−3 + p′′H ′
k−3

+ · · ·+ p(k).

Since the derivative of Hj (j ≥ 1) is also a differential
polynomial of G of degree j (Here we denote by Hj

a differential polynomial of degree j, which may not
be the same each time it occurs), we obtain

F (k+1) = (GF + p)(Gk +Hk−1)

+ F (kGk−1G′ +H ′
k−1)

+ p′Hk−1 + p′′Hk−2

+ · · ·+ p(k−1)H1 + p(k)

= F (Gk+1 +Hk) + pHk

+ p′Hk−1 + · · ·+ p(k−1)H1 + p(k).

This proves by mathematical induction that, for any
positive integer n,

F (n) = F (Gn +Hn−1) + pHn−1 + p′Hn−2(4)

+ · · ·+ p(n−2)H1 + p(n−1),

where p = e−α, G = eβ−α −α′, and Hj is a differen-
tial polynomial of G of degree j (j ≥ 1).

From (3) and (4), we have

eα = Gn +Hn−1(5)

+
1
F

{
pHn−1 + p′Hn−2

+ · · ·+ p(n−2)H1 + p(n−1) − 1
}
.

If

pHn−1 + p′Hn−2 + · · ·+ p(n−2)H1 + p(n−1) �≡ 1,

then from (5), we have

T (r, F ) ≤ nT (r, G) +
n−1∑
i=1

T (r, Hi)(6)

+
n−1∑
i=0

T (r, p(i)) + O(1).



No. 1] Solutions of a pair of differential equations 3

Set f = F + 1, then (3) becomes

f(n) − 1
f − 1

= eα,
f(n) − 1
f − 1

= eβ .

From Lemma 2, we have

(7) T (r, eα) + T (r, eβ) = S(r, F ).

Together with (6), we obtain

T (r, F ) = S(r, F ).

This is a contradiction.
If

pHn−1 + p′Hn−2 + · · ·(8)

+ p(n−2)H1 + p(n−1) ≡ 1,

then

(9) eα ≡ Gn +Hn−1.

By the definition of G and Hj, (9) gives

eα = (eβ−α)n + l1(eβ−α)n−1(10)

+ l2(eβ−α)n−2 + · · ·
+ ln−1e

β−α + ln,

where lj (j = 1, 2, . . . , n) are polynomials of β, α and
their derivatives.

If there exists an infinite set I with meas I = ∞,
such that

T (r, eβ−α) = o{T (r, eα)}, r ∈ I,

then from (9) and (10), we have

T (r, eα) ≤ nT (r, G) + T (r, Hn−1) +O(1)

= o{T (r, eα)}, r ∈ I.

This is impossible. So there exists a set E with finite
linear measure such that

T (r, eα) = O{T (r, eβ−α)}, r �∈ E,

and so
n∑

i=1

T (r, li) = o{T (r, eβ−α)}, r �∈ E.

From Lemma 4 and (10), we obtain

T (r, eα) = nT (r, eβ−α)(11)

+ o{T (r, eβ−α)}, r �∈ E.

On the other hand, from (8) and p = e−α, we have

eα = Hn−1 +
p′

p
Hn−2 + · · ·+ p(n−2)

p
H1 +

p(n−1)

p
,

and so

T (r, eα) = (n− 1)T (r, eβ−α)(12)

+ o{T (r, eβ−α)}, r �∈ E.

From (11) and (12), we have

T (r, eβ−α) = o{T (r, eβ−α)}, r �∈ E.

This is also a contradiction. We complete the proof
of Theorem 1.

Theorem 2. Let α be an entire function, and
let β be a nonconstant entire function. Then the fol-
lowing pair of differential equations

(13) f(n) − eαf = 1, f ′ − eβf = 1

has no common solutions.
Proof. Suppose that the pair of equations (13)

has a solution f . Then f is a transcendental entire
function which satisfies

(14) f(n) − eαf = 1, f ′ − eβf = 1.

Set f = F − 1. Then F satisfies

(15)
F (n) − 1
F − 1

= eα,
F ′ − 1
F − 1

= eβ .

From Lemma 3, we have

(16) T (r, eα) + T (r, eβ) = S(r, F ) = S(r, f).

Taking the derivatives on both sides of the second
equation of (14) gives

f ′′ = f ′eβ + feββ′ = (feβ + 1)eβ + feββ′

= f(e2β + eββ′) + eβ .

In the same manner, we have

f ′′′ = f [e3β + 3β′e2β + eβ(β′β′ + β′′)] + e2β + 2β′eβ .

By induction in number n, it can be easily obtained
that

f(n) =
{
enβ + p1e

(n−1)β(17)

+ p2e
(n−2)β + · · ·+ pn−1e

β + pn

}
f

+ e(n−1)β + · · ·+ qn−2e
β

+ qn−1 = Pf +Q,

where pj (j = 1, 2, . . . , n− 1) and qj (j = 1, 2, . . . , n)
are differential polynomials of β, and

P = enβ + p1e
(n−1)β + p2e

(n−2)β

+ · · ·+ pn−1e
β + pn,

Q = e(n−1)β + q1e
(n−2)β + · · ·+ qn−2e

β + qn−1.

From (15), we know that f and f(n) − 1 (i.e. F − 1
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and F (n) − 1) have the same zeros with the same
multiplicities, by W. K. Hayman’s inequality [2, 12],
we have

T (r, f) ≤
(
2 +

1
n

)
N

(
r,

1
f

)
+ S(r, f)(18)

+
(
2 +

2
n

)
N

(
r,

1
f(n) − 1

)

≤
(
4 +

3
n

)
N

(
r,

1
f

)
+ S(r, f).

If Q ≡ 1, then from Lemma 4, we have

(n − 1)T (r, eβ) = S(r, eβ).

This contradicts that β is a nonconstant entire func-
tion. If Q �≡ 1, then from (16), (17), (18) and
Lemma 4, it is easily seen that

T (r, f) ≤ 6N
(
r,

1
f

)
+ S(r, f)

≤ 6N
(
r,

1
Q− 1

)
+ S(r, f) = S(r, f).

This is also a contradiction. Theorem 2 is thus
proved.

Corollary. If a pair of differential equations

(19) f(n) − eαf = 1, f ′ − eβf = 1

has a common nonconstant entire solution f, where α
and β are entire functions and n (≥ 2) is an integer,
then α and β must be constants, and f assumes the
form

f = ceAz + 1 − 1/A,

where eα = eβ = A, An−1 = 1, and c is a nonzero
constant.

Proof. By Theorem 2, β must be a constant,
and so f is of finite order. From the first equation of
(19), we know that α is also a constant. Solving the
(19), we can deduce the result of the Corollary.

4. Applications. In 1986, Jank et al . proved
the next two results.

Theorem B [5]. Let f be a nonconstant mero-
morphic function, and let a �= 0 be a finite constant.
If f, f ′, and f ′′ share the value a CM, then f ≡ f ′.

Theorem C [5]. Let f be a nonconstant entire
function, and let a �= 0 be a finite constant. If f and
f ′ share the value a IM, and if f ′′(z) = a whenever
f(z) = a, then f ≡ f ′.

Theorem B suggests the following question of
Yi-Yang.

Question 1 [11, p. 458]. Let f be a noncon-
stant meromorphic function, let a �= 0 be a finite

constant, and let n and m be positive integers satis-
fying n < m. If f , f(n), and f(m) share the value a
CM, where n and m are not both even or both odd,
must f ≡ f(n)?

The following example [8] shows that the answer
to Question 1 is, in general, negative. Let n and m

be positive integers satisfying m > n+1, and let b be
a constant which satisfies bn = bm �= 1. Set a = bn

and f(z) = ebz +a−1. Then f , f(n), and f(m) share
the value a CM, and f �≡ f(n).

Theorem A gives an affirmative answer to Ques-
tion 1 in the case when f is an entire function of finite
order and m = n+ 1.

Regarding Theorem A, a natural question is:
Question 2. What can be said when the func-

tion f in Theorem A is replaced by an entire function
of infinite order [10]?

Theorem 3. Let f be a nonconstant entire
function, n be a positive integer. If f, f(n), and
f(n+1) share a finite value a �= 0 CM, then f must
be of finite order.

Proof. Suppose that there is a finite value a �=
0 such that f , f(n), and f(n+1) share a CM, then
there exist two entire functions α and β such that

f(n) − a

f − a
= eα,

f(n+1) − a

f − a
= eβ .

Let F = f/a − 1. Then

T (r, f) = T (r, F ) +O(1),

and F satisfies the following equations

F (n) − eαF = 1,

F (n+1) − eβF = 1.

By Theorem 1, we have eα−β ≡ 1, or α and β are
constants. In both cases, F is a solution of linear
differential equation with constant coefficients, This
implies that F must be of finite order, and so f is of
finite order. Theorem 3 is proved.

Remark. Theorem 3 gives an answer to the
above Question 2, i.e. there is no infinite order entire
functions that satisfy the condition of Theorem A.
By the Corollary of Theorem 2, We have also the fol-
lowing result which is a complement of Theorem C.

Theorem 4. Let f be a nonconstant entire
function, n be a positive integer. If f, f ′, and f(n)

share a finite value a �= 0 CM, then f assumes the
form

f = ceAz + a − a/A,
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where c �= 0 and A are constants satisfying An−1 =
1.
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