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Multiplicative quadratic forms on algebraic varieties
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Abstract: In this note we extend Hurwitz-type multiplication of quadratic forms. For a
regular quadratic space (Kn, q), we restrict the domain of q to an algebraic variety V � Kn and
require a Hurwitz-type “bilinear condition” on V . This means the existence of a bilinear map
ϕ : Kn ×Kn → Kn such that ϕ(V × V ) ⊂ V and q(X)q(Y) = q(ϕ(X,Y)) for any X,Y ∈ V . We
show that the m-fold Pfister form is multiplicative on certain proper subvariety in K2m

for any m.
We also show the existence of multiplicative quadratic forms which are different from Pfister forms
on certain algebraic varieties for n = 4, 6. Especially for n = 4 we give a certain family of them.
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1. Introduction. Let K be a field whose
characteristic is not 2. In 1898, Hurwitz showed that
if there is an identity of the type

(X2
1 + · · ·+X2

n)(Y 2
1 + · · ·+ Y 2

n ) = Z2
1 + · · ·+ Z2

n,

where the Zk’s are bilinear forms of the indepen-
dent variables Xi and Yj over K then n = 1, 2, 4, 8.
In general, for a regular quadratic form q(X) :=
q(X1, . . . , Xn) over K, q(X) is called multiplicative
if there exists a formula

q(X)q(Y) = q(Z),(1)

where the Xi and Yj are independent variables and
Zk ∈ K(X,Y). q(X) is called strictly multiplica-
tive if there exists a formula (1) with Zk linear in
Yj over K(X). It is known that if q(X) is isotropic
then q(X) is always multiplicative and in this case
q(X) is strictly multiplicative if and only if q(X) is
hyperbolic (see [4] or [7]). A quadratic form is called
Pfister form if it is expressible as a tensor product of
binary quadratic forms of the type 〈1, a〉. We denote
by 〈〈a1, a2, . . . , am〉〉 the m-fold Pfister form 〈1, a1〉⊗
〈1, a2〉⊗ · · ·⊗〈1, am〉. In 1965, A. Pfister showed the
following theorem.

Theorem (Pfister [3]). If q is a Pfister form,
then q is strictly multiplicative. Conversely if q is an
anisotropic multiplicative form over K, then q must
be a Pfister form.

Let DK(n) be the set of values in K× repre-
sented by a sum of n squares in K, namely
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DK (n) = {α ∈ K× | α = α2
1 + · · ·+ α2

n, αj ∈ K}.
The Stufe (or level) of a field K is defined as s(K) :=
Inf{n ∈ N : −1 ∈ DK(n)}. From above theorem,
we see that if n is a power of 2 then DK(n) is a
multiplicative group. Using this fact, Pfister proved
the following remarkable theorem (see [2] or [7]).

Theorem (Pfister). For any field K, s(K) is,
if finite, always a power of 2. Conversely every
power of 2 is the Stufe of some field K.

2. Multiplicative quadratic forms on al-
gebraic varieties. In this section, we extend the
Hurwitz-type multiplicative quadratic forms in dif-
ferent way. For a regular quadratic space (Kn, q),
we restrict the domain of q to an algebraic variety
V � Kn. Furthermore we require the Hurwitz-type
“bilinear condition” for q on V . More precisely, we
make the following.

Definition. Let V � Kn be an algebraic va-
riety. We say a regular quadratic form q(X) is mul-
tiplicative on V if there is a bilinear map ϕ : Kn ×
Kn → Kn such that

ϕ(V × V ) ⊂ V and

q(X)q(Y) = q(ϕ(X,Y)) for any X,Y ∈ V.

Then the following natural problems arise.
Problem 1. Given a regular quadratic form

q(X), determine whether an algebraic variety V �

Kn exists on which q(X) is multiplicative.
Problem 2. Given an algebraic variety V �

Kn, determine whether a quadratic form q(X) which
is multiplicative on V exists.
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Problem 3. If Problem 1 or 2 is affirmative,
find a bilinear map ϕ explicitly.

Note that in the classical case V = Kn, an
anisotropic quadratic form is multiplicative if and
only if it is a Pfister form. Moreover, when we re-
quire the Hurwitz-type “bilinear condition” a multi-
plicative quadratic form exists only for dimension 1,
2, 4 and 8. In this note we assume that the quadratic
form is diagonal in order to simplify an argument.

We first describe a simple example which is a
slight generalization of Hurwitz’s theorem (see [5]).
Let A be a finite-dimensional K-algebra with involu-
tion τ . We define an algebraic variety Vτ := {x ∈ A |
x · xτ ∈ K} and a quadratic form Nτ (α) := α · ατ ,
α ∈ Vτ . Then we see that

Nτ (αβ) = αβ(αβ)τ = αβ(βτατ) = α(ββτ )ατ

= Nτ (α)Nτ (β), for any α, β ∈ Vτ .

In particular we consider the following case,
from which one can recover the Pfister form in nat-
ural way. Let a1, . . . , am ∈ K× and suppose L =
K(

√−a1, . . . ,
√−am) is an extension field of degree

2m over K. We put Sm := {1, 2, . . . , m} then {eI :=∏
i∈I

√−ai | I ⊆ Sm} is a basis for L/K. For 1 ≤
i ≤m, we define σi ∈ Aut(L/K) by

σi(
√−ak) =

{
−√−ak, if k = i,
√−ak, if k 
= i.

Hence Gal(L/K) ∼= 〈σ1, . . . , σm〉. We now consider
τ ∈ Gal(L/K) of order 2 and define sgnτ(i) ∈ {±1}
for 1 ≤ i ≤ m by the equation

τ (
√−ai) = sgnτ (i)

√−ai.
For α ∈ L, we write

α =
∑
I⊆Sm

uIeI , uI ∈ K

and define

Nτ (α) := NL/L〈τ〉 (α) = α · ατ ∈ L〈τ〉 .

Then there are 2m−1 quadratic forms fJ (X) :=
fJ(X1, . . . , X2m), (J ⊆ Sm, τ (eJ) = eJ) such that

Nτ (α) =
∑
J⊆Sm

τ(eJ )=eJ

fJ (uJ)eJ .(2)

Note that f∅(X) is the m-fold Pfister form
〈〈−sgnτ(1)a1, . . . ,−sgnτ(m)am〉〉. We see that

{α ∈ L× | Nτ (α) ∈ K}

is a multiplicative group. Therefore we obtain the
following fundamental proposition of the theory of
multiplicative quadratic forms on algebraic varieties.

Proposition 1. Let fJ (X) be 2m−1 quadratic
forms defined in (2) and let V be defined by the
2m−1 − 1 equations fJ(X) = 0, (J 
= ∅). The
m-fold Pfister form f∅(X) = 〈〈−sgnτ (1)a1, . . . ,

−sgnτ (m)am〉〉 is multiplicative on V .
Let V � Kn be an algebraic variety and q be a

quadratic form on V . Define DV (q) to be the set of
values in K× represented by q on V , namely

DV (q) = {α ∈ K× | α = q(α1, . . . , αn),

for (α1, . . . , αn) ∈ V }.
We see that if q is multiplicative on V and represents
1 then DV (q) is a multiplicative group. Note that
we can also consider q over a commutative ring R

requiring the Hurwitz-type “bilinear condition” over
R. We shall give an application which is the case
over the ring of integers Z in Section 3.

We now present an example of Proposition 1.
Example 2. The case m = 2. Suppose L =

K(
√−a1,

√−a2) is an biquadratic extension field of
K and let τ ∈ Gal(L/K) of order 2 such that

τ (
√−a1) = −√−a1, τ (

√−a2) = −√−a2.

For α, β ∈ L, we write

α = X1 +X2

√−a1 +X3

√−a2 +X4

√−a1

√−a2,

β = Y1 + Y2

√−a1 + Y3

√−a2 + Y4

√−a1

√−a2.

We have

Nτ (α) = X2
1 + a1X

2
2 + a2X

2
3 + a1a2X

2
4

+ 2(X1X4 −X2X3)
√−a1

√−a2

and put

q(X) := f∅(X) = X2
1 + a1X

2
2 + a2X

2
3 + a1a2X

2
4 ,

h(X) := f1,2(X) = 2(X1X4 −X2X3).

From Proposition 1, q(X) is multiplicative on V :
h(X) = 0. Namely if h(X) = 0 and h(Y) = 0 then
there is the bilinear map ϕ : K4 × K4 → K4 such
that q(X)q(Y) = q(ϕ(X,Y)) and h(ϕ(X,Y)) = 0.
Since Nτ (α)Nτ (β) = Nτ (αβ) and

αβ = (X1Y1 − a1X2Y2 − a2X3Y3 + a1a2X4Y4)

+ (X2Y1 +X1Y2 − a2X4Y3 − a2X3Y4)
√−a1

+ (X3Y1 − a1X4Y2 +X1Y3 − a1X2Y4)
√−a2

+ (X4Y1 +X3Y2 +X2Y3 +X1Y4)
√−a1

√−a2,
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we obtain the bilinear map ϕ explicitly as follows:

ϕ(X,Y) = (X1Y1 − a1X2Y2 − a2X3Y3 + a1a2X4Y4,

X2Y1 +X1Y2 − a2X4Y3 − a2X3Y4,

X3Y1 − a1X4Y2 +X1Y3 − a1X2Y4,

X4Y1 +X3Y2 +X2Y3 +X1Y4).

Moreover using above bilinear map ϕ, we have
the following equations.

Corollary 3. Let q(X), h(X), ϕ(X,Y) be as
above in Example 2. Then

q(X)q(Y) = q(ϕ(X,Y)) − a1a2h(X)h(Y),

h(ϕ(X,Y)) = q(X)h(Y) + h(X)q(Y),

where the Xi and Yj are independent variables.

Remark. From Corollary 3, the 2-fold Pfister
form q(X) = X2

1 + a1X
2
2 + a2X

2
3 + a1a2X

2
4 , a1, a2 ∈

K× is multiplicative on V : h(X) = 0 without the
supposition that K(

√−a1,
√−a2) is a field of degree

4 over K as in Example 2.
The following problem arises as the next natural

question after Proposition 1.

Problem 4. Does there exist a quadratic form
q(X) which is different from a Pfister form and mul-
tiplicative on an algebraic variety V � Kn.

As in the case which is over vector spaceKn, one
might expect that a multiplicative quadratic form
on algebraic variety is always a Pfister form. How-
ever we give the following result for 4-dimensional
quadratic forms.

Theorem 4. For a, b, c ∈ K× with b2 + 4ac 
=
0, let V(a,b,c) be a hypersurface on A4 defined by
X1X2 + aX2

3 + bX3X4 − cX2
4 = 0. For any λ ∈ K×,

q(X) = X2
1 + (b2 + 4ac)acλ2X2

2 + (b2 + 4ac)aλX2
3 +

(b2+4ac)cλX2
4 is multiplicative on V(a,b,c). Moreover

the bilinear map ϕ is given explicitly as follows:

ϕ(X,Y) =

(X1Y1 + (b2 + 4ac)acλ2X2Y2

+ (b2 + 4ac)aλX3Y3 + (b2 + 4ac)cλX4Y4,

X2Y1 +X1Y2 + 2aX3Y3

+ bX4Y3 + bX3Y4 − 2cX4Y4,

X3Y1 + 2acλX3Y2 + bcλX4Y2

−X1Y3 − 2acλX2Y3 − bcλX2Y4,

X4Y1 + abλX3Y2 − 2acλX4Y2

− abλX2Y3 −X1Y4 + 2acλX2Y4).

Proof. Put f(X) := X1X2 + aX2
3 + bX3X4 −

cX2
4 . Using ϕ, we can show the following relations

by direct calculation.

q(X)q(Y) = q(ϕ(X,Y))

− 4(b2 + 4ac)acλ2f(X)f(Y),

f(ϕ(X,Y)) = q(X)f(Y) + f(X)q(Y).

Corollary 5. Let a, b, c, V(a,b,c) be as above in
Theorem 4. Suppose b2 +4ac 
∈ K×2. Then there are
infinitely many 4-dimensional diagonal multiplicative
quadratic forms on V(a,b,c) which are different from
Pfister forms.

Remark. For Theorem 4, if we consider q(X)
over the field K(

√
b2 + 4ac) then we see that The-

orem 4 is a consequence of Proposition 1. In fact
if we use the non-singular linear transformation of
variables as follows:

X1 → X̃1, X2 → X̃4,

X3 → 1
2a

(
X̃2 − aX̃3 − b(X̃2 + aX̃3)√

b2 + 4ac

)
,

X4 → X̃2 + aX̃3√
b2 + 4ac

,

then we can show that q(X) and f(X) in Theorem 4
are transformed to

q(X̃) = X̃2
1 +m1X̃

2
2 +m2X̃

2
3 +m3X̃

2
4 ,

f(X̃) = X̃1X̃4 − X̃2X̃3,

where

m1 =
λ

2a

(
b2 + 4ac− b

√
b2 + 4ac

)
,

m2 =
aλ

2

(
b2 + 4ac+ b

√
b2 + 4ac

)
,

m3 = m1m2 = (b2 + 4ac)acλ2.

The following theorem shows that, in contrast
to the classical case, a multiplicative quadratic form
q(X) exists in the non 2-power dimensional case for
some algebraic varieties V .

Theorem 6. Let q(X) = X2
1 +21X2

2 +21X2
3 +

21X2
4 + 14X2

5 + 42X2
6 and V :

3X2
2 + 6X2X3 − 6X2X4 + 12X3X4

−3X2
4 + 3X2

5 + 4X1X6 + 2X5X6 − 9X2
6 = 0,

12X2X3 + 3X2
3 + 6X2X4 + 6X3X4 − 3X2

4

+2X1X5 +X2
5 + 2X1X6 + 10X5X6 − 3X2

6 = 0.
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Then q(X) is multiplicative on V . Moreover the bi-
linear map ϕ is given explicitly as follows:

ϕ(X,Y) =(−X1Y1 − 21X2Y2

− 21X3Y3 − 21X4Y4 − 14X5Y5 − 42X6Y6,

X2Y1 −X1Y2 +X5Y2 − 3X6Y2

− 3X5Y3 − 3X6Y3 − 3X5Y4 + 3X6Y4 −X2Y5

+ 3X3Y5 + 3X4Y5 + 3X2Y6 + 3X3Y6 − 3X4Y6,

X3Y1 − 3X5Y2 − 3X6Y2 −X1Y3 − 2X5Y3

− 6X6Y4 + 3X2Y5 + 2X3Y5 + 3X2Y6 + 6X4Y6,

X4Y1 − 3X5Y2 + 3X6Y2

− 6X6Y3 −X1Y4 +X5Y4 + 3X6Y4

+ 3X2Y5 −X4Y5 − 3X2Y6 + 6X3Y6 − 3X4Y6,

(−2X5Y1 + 3X2Y2 − 9X3Y2

−9X4Y2 − 9X2Y3 − 6X3Y3 − 9X2Y4

+3X4Y4 − 2X1Y5 +X5Y5 − 9X6Y5 − 9X5Y6)/2,

(−2X6Y1 − 3X2Y2 − 3X3Y2 + 3X4Y2 − 3X2Y3

−3X6Y6 − 6X4Y3 + 3X2Y4 − 6X3Y4 + 3X4Y4

−3X5Y5 −X6Y5 − 2X1Y6 −X5Y6 + 9X6Y6)/2
)
.

Proof. We put

f1(X) : = 3X2
2 + 6X2X3 − 6X2X4 + 12X3X4 − 3X2

4

+ 3X2
5 + 4X1X6 + 2X5X6 − 9X2

6 ,

f2(X) : = 12X2X3 + 3X2
3 + 6X2X4 + 6X3X4 − 3X2

4

+ 2X1X5 +X2
5 + 2X1X6 + 10X5X6 − 3X2

6 .

Using ϕ, we find the following relations which can be
checked by direct calculation.

q(X)q(Y) = q(ϕ(X,Y)) − 14f1(X)f1(Y)

+ 7f1(X)f2(Y) + 7f2(X)f1(Y)

− 14f2(X)f2(Y),

f1(ϕ(X,Y)) = q(X)f1(Y) + f1(X)q(Y)

− 2f1(X)f1(Y) − f1(X)f2(Y)

− f2(X)f1(Y) + 3f2(X)f2(Y),

f2(ϕ(X,Y)) = q(X)f2(Y) + f2(X)q(Y)

− 3f1(X)f1(Y) + 2f1(X)f2(Y)

+ 2f2(X)f1(Y) + f2(X)f2(Y).

3. Applications. We give one example of
applications which use the multiplicative quadratic

forms on algebraic varieties over the ring of integers
Z.

Let p be a prime ≡ 1 (mod 5). It is well known
that the following system of diophantine equations
has exactly four integer solutions.

16p = x2 + 125w2 + 50v2 + 50u2,(3)

xw = v2 − 4uv − u2,(4)

x ≡ −1 (mod 5).(5)

This system is often called “Dickson’s system” since
above result was discovered by Dickson [1] in 1935.
If (x, w, v, u) is one integer solution then the re-
maining three are (x,−w,−u, v), (x, w,−v,−u),
(x,−w, u,−v).

We are able to apply Theorem 4 to above system
of diophantine equations. Using Theorem 4 for a =
−1, b = 4, c = −1, λ = −5/2, we see that the
quadratic form q(X) = X2

1 + 125X2
2 + 50X2

3 + 50X2
4

is multiplicative on V : X1X2 = X2
3 − 4X3X4 −

X2
4 . The bilinear map ϕ : Z4 × Z4 → Z4 such that

q(X)q(Y) = q(ϕ(X,Y)) is given as follows:

ϕ(X,Y) =(6)

(X1Y1 + 125X2Y2 + 50X3Y3 + 50X4Y4,

X2Y1 +X1Y2 − 2X3Y3

+ 4X4Y3 + 4X3Y4 + 2X4Y4,

X3Y1 − 5X3Y2 + 10X4Y2

−X1Y3 + 5X2Y3 − 10X2Y4,

X4Y1 + 10X3Y2 + 5X4Y2

− 10X2Y3 −X1Y4 − 5X2Y4).

Using this ϕ, we obtain the following extended result
of Dickson’s system.

Theorem 7. Let N be an integer such that
N = pr11 p

r2
2 · · ·prk

k , where pi ≡ 1 (mod 5) is a prime
for each i. Then the system of diophantine equations
(3)–(5) with N instead of p has integer solutions.

Let p1 and p2 be primes such that p1 ≡
p2 ≡ 1 (mod 5). Let (xp1 , wp1, vp1 , up1) (resp.
(xp2 , wp2, vp2 , up2)) be one of integer solutions
of the system of (3)–(5) which belongs to p1

(resp. p2). For the product p1p2, we define
(xp1p2 , wp1p2 , vp1p2 , up1p2) ∈ Z[1/2]4 by

(xp1p2 , wp1p2 , vp1p2 , up1p2 )(7)

:=
ϕ((xp1 , wp1 , vp1 , up1), (xp2 , wp2 , vp2 , up2))

4
,

where ϕ is the bilinear map in (6). Furthermore,
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we define (xN , wN , vN , uN) ∈ Z[1/2]4, for N =
pr11 p

r2
2 · · ·prk

k , each pi is prime ≡ 1 (mod 5), by re-
peating and using the definition (7). We see that the
4-tuple (xN , wN , vN , uN) is the solution of the Dick-
son’s system (3)–(5) which belongs to N . Therefore
to prove Theorem 7 we have to show that the 4-tuple
is integral: (xN , wN , vN , uN) ∈ Z4.

Lemma 8. Let p be a prime ≡ 1 (mod 5).
Then the solution (xp, wp, vp, up) ∈ Z4 of the system
(3)–(5) satisfies the following congruences.{

−xp + wp + 2up ≡ 0 (mod 4),

−xp − wp + 2vp ≡ 0 (mod 4).
(8)

Proof. See, for example, [6, Lemma 1 (d)].

Lemma 9. Let N1 = la1
1 la2

2 · · · lam
m and N2 =

qb11 q
b2
2 · · · qbn

n , each lj , qk is prime ≡ 1 (mod 5). If
(xNi , wNi , vNi , uNi) ∈ Z4 and it satisfies (8) for i =
1, 2 then (xN1N2 , wN1N2 , vN1N2 , uN1N2) ∈ Z4 and it
also satisfies (8).

Proof. If (xNi , wNi, vNi , uNi) ∈ Z4 and it sat-
isfies (8) for i = 1, 2 then there are s1 , t1, s2, t2 ∈ Z
such that{

xNi = wNi + 2uNi + 4si, (i = 1, 2),

vNi = wNi + uNi + 2ti, (i = 1, 2).
(9)

By the definition (7) and using (9) we see that the
4-tuple (xN1N2 , wN1N2 , vN1N2 , uN1N2) is equal to

(4s1s2 + 50t1t2 + 2s2u1 + 25t2u1

+ 2s1u2 + 25t1u2 + 26u1u2 + s2w1 + 25t2w1

+ 13u2w1 + s1w2 + 25t1w2 + 13u1w2 + 44w1w2,

s2w1 − 2t1t2 + t2u1 + t1u2

+ 2u1u2 − t2w1 + u2w1 + s1w2 − t1w2 + u1w2,

2s2t1 − 2s1t2 + s2u1 − t2u1 − s1u2 + t1u2

+ s2w1 + 2t2w1 − u2w1 − s1w2 − 2t1w2 + u1w2,

s2u1 − s1u2 − 5t2w1 − 4u2w1 + 5t1w2 + 4u1w2),

where (wi, ui) = (wNi , uNi) for i = 1, 2.
Hence (xN1N2 , wN1N2 , vN1N2 , uN1N2 ) ∈ Z4. Using

this it is easily verified that this 4-tuple satisfies (8).

Proof of Theorem 7. By the definition (7), the
system of diophantine equations (3)–(4) which be-
longs to N has solutions (xN , wN , vN , uN) ∈ Z[1/2]4.
By Lemma 8 and Lemma 9, we obtain that this 4-
tuple (xN , wN , vN , uN) is in Z4. It remains to show
that xN ≡ −1 (mod 5). This follows from (6) and
(7).

It is well known that the Dickson’s system (3)–
(5) is related very deeply to the Jacobi sums. In fact
for a prime p ≡ 1 (mod 5) the solution of Dickson’s
system (3)–(5) give the coefficients of Jacobi sum for
Fp. We can study the Jacobi sum for Fq, q = pα

in detail by using Theorem 4. We shall discuss it in
separate paper because it is much more elaborate.
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