Normal integral basis and ray class group modulo 4

By Humio Ichimura*) and Fuminori Kawamoto**)
(Communicated by Shokichi Iyanaga, M. J. A., Nov. 12, 2003)

Abstract

We prove that a number field K satisfies the following property (B) if and only if the ray class group of K defined modulo 4 is trivial. (B): For any tame abelian extensions N_{1} and N_{2} over K of exponent 2, the composite $N_{1} N_{2} / K$ has a relative normal integral basis (NIB) if both N_{1} / K and N_{2} / K have a NIB.

Key words: Normal integral basis; ray class group.

1. Introduction. For a number field K and an integral divisor \mathfrak{M} of K, let $K(\mathfrak{M})$ be the ray class field of K modulo \mathfrak{M}, and $C l_{K, \mathfrak{M}}$ the ray class group modulo \mathfrak{M}. Denote by \mathfrak{M}_{∞} the product of the real primes of K. When K is totally real and \mathfrak{M} divides \mathfrak{M}_{∞}, Kawamoto and Odai [6] showed that there exists a unique intermediate field $L_{\mathfrak{M}}$ of $K(\mathfrak{M}) / K$ such that (i) $L_{\mathfrak{M}} / K$ has a relative normal integral basis (NIB for short) and (ii) any intermediate field N of $K(\mathfrak{M}) / K$ is contained in $L_{\mathfrak{M}}$ if N / K has a NIB. Further, it is shown that the Galois group $\operatorname{Gal}\left(L_{\mathfrak{M}} / K\right)$ is of exponent 2, and a generator of a NIB of $L_{\mathfrak{M}} / K$ is given in terms of units of K. (Here, an abelian group G is of exponent 2 when $x^{2}=1$ for all $x \in G$.) These results are obtained by using some results of Brinkhuis [1] and Childs [2].

In Kawamoto [5], we asked the following question on the existence of such an intermediate field $L_{\mathfrak{M}}$ for general \mathfrak{M}.

Question. Characterize a number field K enjoying the following property (A).
(A) For any integral divisor \mathfrak{M} of K, there exists a unique intermediate field $L_{\mathfrak{M}}$ of $K(\mathfrak{M}) / K$ such that
(i) $L_{\mathfrak{M}} / K$ has a NIB and $\operatorname{Gal}\left(L_{\mathfrak{M}} / K\right)$ is of exponent 2,
and
(ii) any intermediate field N of $K(\mathfrak{M}) / K$ is contained in $L_{\mathfrak{M}}$ if N / K has a NIB and $\operatorname{Gal}(N / K)$ is of exponent 2.

[^0]We easily see that the condition (A) on K is equivalent to the following condition:
(B) For any (tame) abelian extensions N_{1} and N_{2} over K of exponent 2, the composite $N_{1} N_{2} / K$ has a NIB if both N_{1} / K and N_{2} / K have a NIB.

Let $h_{K}=\left|C l_{K, 1}\right|$ be the class number of K in the usual sense. In [5], it is shown that if a number field K satisfies (A), then $h_{K}=1$ and $C l_{K, 4 \mathfrak{M}_{\infty}}$ is of exponent 2. The purpose of the present article is to strengthen this result as follows:

Theorem. A number field K enjoys the property (A) if and only if the ray class group $C l_{K, 4}$ is trivial.

For a number field K, let \mathcal{O}_{K} be the ring of integers and $E_{K}=\mathcal{O}_{K}^{\times}$the group of units of K. For an integer $n \geq 2$, let $\left[E_{K}\right]_{n}$ be the subgroup of the multiplicative group $\left(\mathcal{O}_{K} / n\right)^{\times}=\left(\mathcal{O}_{K} / n \mathcal{O}_{K}\right)^{\times}$generated by the classes containing units of K. We have $C l_{K, 4}=\{0\}$ if and only if $h_{K}=1$ and $\left(\mathcal{O}_{K} / 4\right)^{\times}=$ $\left[E_{K}\right]_{4}$. The condition $\left(\mathcal{O}_{K} / 4\right)^{\times}=\left[E_{K}\right]_{4}$ is satisfied only when K is totally real (Lemma 4). In Section 3 , we deal with a real quadratic field with odd class number and give a simple necessary and sufficient condition for $\left(\mathcal{O}_{K} / 4\right)^{\times}=\left[E_{K}\right]_{4}$.
2. Proof of Theorem. The following assertion was shown in Ichimura [3, Proposition 3].

Lemma 1. For a number field K, the following two conditions are equivalent.
(i) Any tame abelian extension over K of exponent 2 has a NIB.
(ii) We have $C l_{K, 4}=\{0\}$.

Proof of the "if" part of Theorem. Let $L_{\mathfrak{M}}$ be the composite of all tame quadratic extensions of K contained in $K(\mathfrak{M})$. Then, from Lemma 1, we see that $L_{\mathfrak{M}}$ has the desired property.

The following lemma was shown in Massy [7, Section 3].

Lemma 2. Let N / K be a tame quadratic extension of a number field K, and let \wp_{1}, \ldots, \wp_{r} be all the prime ideals of K ramified at N. Then, N / K has a NIB if and only if there exists an integer d of K with $N=K(\sqrt{d})$ such that $d \equiv 1 \bmod 4$ and $d \mathcal{O}_{K}=\wp_{1} \cdots \wp_{r}$.

Lemma 3. Assume that a number field K satisfies the property (A). Then, the ray class group $C l_{K, 2}$ is trivial.

Proof. Let \mathfrak{P} be an arbitrary prime ideal of K with $\mathfrak{P} \nmid 2$, and $C \in C l_{K, 4}$ the ray ideal class modulo 4 containing \mathfrak{P}. Let $\mathfrak{Q}_{1}, \mathfrak{Q}_{2}$ be prime ideals of K contained in C^{-1} with $\mathfrak{Q}_{i} \nmid 2 \mathfrak{P}$ and $\mathfrak{Q}_{1} \neq \mathfrak{Q}_{2}$. Then, there exist integers $d_{i} \in \mathcal{O}_{K}(i=1,2)$ such that
(1) $\quad d_{i} \equiv 1 \bmod 4 \quad$ and $\quad \mathfrak{P Q}_{i}=d_{i} \mathcal{O}_{K}$.

We put $N_{1}=K\left(\sqrt{d_{1}}\right), N_{2}=K\left(\sqrt{d_{2}}\right), N_{3}=$ $K\left(\sqrt{d_{1} d_{2}}\right)$. These are quadratic extensions over K. By Lemma 2 and (1), N_{1} / K and N_{2} / K have a NIB. Then, the composite $N_{1} N_{2} / K$ has a NIB as K satisfies (A) (or equivalently, (B)). Hence, N_{3} / K has a NIB as $N_{3} \subseteq N_{1} N_{2}$. By Lemma 2, we can write $N_{3}=K(\sqrt{d})$ for some integer $d \in \mathcal{O}_{K}$ such that
(2) $\quad d \equiv 1 \bmod 4 \quad$ and $\quad d \mathcal{O}_{K}=\mathfrak{Q}_{1} \mathfrak{Q}_{2}$.

As $K\left(\sqrt{d_{1} d_{2}}\right)=K(\sqrt{d})$, we have

$$
d_{1} d_{2}=d x^{2}
$$

for some $x \in K^{\times}$. Therefore, it follows from (1) and (2) that $\mathfrak{P}=x \mathcal{O}_{K}$ and $x^{2} \equiv 1 \bmod 4$. The last condition implies $x \equiv 1 \bmod 2$. Hence, it follows that the ray class group $C l_{K, 2}$ is trivial as \mathfrak{P} is an arbitrary prime ideal (with $\mathfrak{P} \nmid 2$).

Proof of the "only if" part of Theorem. Assume that K satisfies the condition (A) (or equivalently, (B)). Then, by Lemma 3, we have $C l_{K, 2}=$ $\{0\}$. Namely, we have $h_{K}=1$ and $\left(\mathcal{O}_{K} / 2\right)^{\times}=$ $\left[E_{K}\right]_{2}$. It follows from these conditions that any tame quadratic extension N / K has a NIB. Though this fact is known to specialists, we give a proof for the sake of completeness.

Let N / K be a tame quadratic extension. Then, as $h_{K}=1$, we see that $N=K(\sqrt{a})$ for some integer $a \in \mathcal{O}_{K}$ with $(a, 2)=1$ such that the integral ideal $a \mathcal{O}_{K}$ is square free in the semi-group of integral ideals of K. As N / K is tame, we have $a \equiv u^{2} \bmod 4$ for some $u \in \mathcal{O}_{K}$. It follows from this that $a \equiv \epsilon^{2} \bmod 4$
for some unit $\epsilon \in E_{K}$ because $\left(\mathcal{O}_{K} / 2\right)^{\times}=\left[E_{K}\right]_{2}$. Hence, by Lemma 2, N / K has a NIB.

Now, from the above, we see that any tame abelian extension of exponent 2 has a NIB since we are assuming the condition (B). Therefore, we obtain $C l_{K, 4}=\{0\}$ by Lemma 1 .
3. Real quadratic fields. First, we show the following lemma mentioned in Section 1.

Lemma 4. For a number field K, the condition $\left(\mathcal{O}_{K} / 4\right)^{\times}=\left[E_{K}\right]_{4}$ is satisfied only when K is totally real.

Proof. Denote by ρ_{1} and ρ_{2} the 2-ranks of the abelian groups $\left[E_{K}\right]_{4}$ and $\left(\mathcal{O}_{K} / 4\right)^{\times}$, respectively. Let r_{1} (resp. r_{2}) be the number of real (resp. complex) primes of K. By the Dirichlet unit theorem, we have

$$
\rho_{1} \leq r_{1}+r_{2}
$$

Let $2 \mathcal{O}_{K}=\wp_{1}^{e_{1}} \cdots \wp_{s}^{e_{s}}$ be the prime decomposition in K, and let f_{i} be the degree of the prime ideal \wp_{i}. Let A be the subgroup of $\left(\mathcal{O}_{K} / 4\right)^{\times}$consisting of classes $[x]_{4}$ with $x \equiv 1 \bmod 2$. Clearly, we have

$$
A=\bigoplus_{i=1}^{s} A_{i}
$$

with

$$
A_{i}=\frac{\left\{x \in \mathcal{O}_{K} \mid x \equiv 1 \bmod \wp_{i}^{e_{i}}\right\}}{\left\{x \in \mathcal{O}_{K} \mid x \equiv 1 \bmod \wp_{i}^{2 e_{i}}\right\}}
$$

As A is of exponent 2 , we see that

$$
\begin{aligned}
\rho_{2} & \geq \operatorname{ord}_{2}(|A|)=\sum_{i} \operatorname{ord}_{2}\left(\left|A_{i}\right|\right) \\
& =\sum_{i} e_{i} f_{i}=r_{1}+2 r_{2}
\end{aligned}
$$

Here, $|X|$ is the cardinality of a finite set X, and $\operatorname{ord}_{2}(*)$ is the additive valuation on the rationals \boldsymbol{Q} with $\operatorname{ord}_{2}(2)=1$. The assertion follows from the above two inequalities.

Let $K=\boldsymbol{Q}(\sqrt{m})$ be a real quadratic field with a square free integer $m>1$, and let ϵ be a fundamental unit of K. We show the following:

Proposition. Under the above setting, assume that the class number h_{K} of K is odd. Then, we have $\left(\mathcal{O}_{K} / 4\right)^{\times}=\left[E_{K}\right]_{4}$ if and only if one of the following three conditions holds.
(i) $m=2$.
(ii) $m=p$ is a prime number with $p \equiv 1 \bmod 8$.
(iii) $m=p$ is a prime number with $p \equiv 5 \bmod 8$, and $\epsilon^{2} \not \equiv 1 \bmod 4$.

For brevity, we write $X_{K}=\left(\mathcal{O}_{K} / 4\right)^{\times}$and $\left[E_{K}\right]=\left[E_{K}\right]_{4}$. For an integer $x \in \mathcal{O}_{K}$ with $(x, 2)=$ 1 , let $[x]$ be the class in X_{K} represented by x. The group $\left[E_{K}\right]$ is generated by the classes $[-1]$ and $[\epsilon]$. Let $\omega=\sqrt{m}$ or $(1+\sqrt{m}) / 2$ according to whether $m \equiv 2,3 \bmod 4$ or $m \equiv 1 \bmod 4$. The set $\{1, \omega\}$ is a free basis of \mathcal{O}_{K} over \boldsymbol{Z}. Let $M=(m-1) / 4$ when $m \equiv 1 \bmod 4$. We distinguish the following three cases to show Proposition:
(I) 2 ramifies,
(II) 2 splits,
(III) 2 remains prime in K.

For the case (III), we need the following lemma (cf. Kawamoto [4, Lemma 6.6]).

Lemma 5. In the case (III), we have

$$
X_{K}=\langle[-1]\rangle \times\langle[1+2 \omega]\rangle \times\langle[M+\omega]\rangle
$$

and this is an abelian group of type (2,2,3).
Proof of Proposition. The case (I). In this case, X_{K} is an abelian group of type $(2,4)$. When $m=2$, we easily see that $X_{K}=\left[E_{K}\right]$. So, let $m>2$. Since h_{K} is odd, we see from genus theory that $m=q$ or $2 q, q$ being a prime number with $q \equiv 3 \bmod 4$. (For genus theory, see Ono [8, Chapter 4] for example.) First, let $m=q$. Since h_{K} is odd and the prime 2 ramifies in K, we see that $\epsilon=\pi^{2} / 2$ for some integer $\pi=a+b \omega(a, b \in \boldsymbol{Z})([4$, Lemma 3.1]). Clearly, we have $N(\pi)= \pm 2$, where $N(x)$ denotes the norm of $x \in K^{\times}$. Hence, a and b are odd. From this, we see that $\epsilon^{2}=\pi^{4} / 4 \equiv-1 \bmod 4$, and hence $\left[E_{K}\right]$ is a cyclic group. Therefore, we obtain $\left[E_{K}\right] \varsubsetneqq X_{K}$ as X_{K} is of type $(2,4)$. Next, let $m=2 q$. Since h_{K} is odd and the prime q ramifies in K, we have $\epsilon=$ π^{2} / q for some integer $\pi=a+b \omega \in \mathcal{O}_{K}$ ([4, Lemma 3.1]). We easily see that a is odd and that $\epsilon^{2} \equiv \pi^{4} \equiv$ $1 \bmod 4$. This implies $\left[E_{K}\right] \varsubsetneqq X_{K}$.

The case (II). In this case, X_{K} is an abelian group of type $(2,2)$. We easily see that $X_{K}=\left[E_{K}\right]$ if and only if $N(\epsilon)=-1$. As h_{K} is odd and the prime 2 splits in K, it follows from genus theory that $m=$ p is a prime number with $p \equiv 1 \bmod 8$, or $m=q_{1} q_{2}$ for some prime numbers q_{i} satisfying $q_{1} \equiv 3 \bmod 4$ and $q_{1} \equiv q_{2} \bmod 8$. It is known that $N(\epsilon)=-1$ in the former case and $N(\epsilon)=1$ in the latter case ([8, Theorem 4.5]). The assertion follows from this in this case.

The case (III). As h_{K} is odd and the prime 2 remains prime in K, it follows from genus theory that $m=p$ is a prime number with $p \equiv 5 \bmod 8$,
or $m=q_{1} q_{2}$ for some prime numbers q_{i} satisfying $q_{1} \equiv q_{2} \equiv 3 \bmod 4$ and $q_{1} \not \equiv q_{2} \bmod 8$. We may as well assume that $\epsilon>1$. First, let $m=p$. Then, by [4, Lemma 3.3 (iv)], we have

$$
[\epsilon]=[1+2 \omega],[-M+\omega] \text { or }[M-1+\omega] .
$$

As is easily seen, we have

$$
[-M+\omega]=[1+2 \omega][M+\omega]
$$

and

$$
[M-1+\omega]=[1+2 \omega][M+\omega]^{2}
$$

Then, we see from Lemma 5 that $X_{K}=\left[E_{K}\right]$ if and only if $\epsilon^{2} \not \equiv 1 \bmod 4$. Next, let $m=q_{1} q_{2}$. By [4, Lemma 3.3 (iii)], we have

$$
[\epsilon]=[-1],[M+1+\omega] \text { or }[-M-\omega] .
$$

Noting that $[M+1+\omega]=[-1][M+\omega]^{2}$, we see from Lemma 5 that $\left[E_{K}\right] \varsubsetneqq X_{K}$.

Acknowledgements. The first author was partially supported by Grant-in-Aid for Scientific Research (C), (No. 13640036), the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

[1] Brinkhuis, J.: Unramified abelian extensions of CM-fields and their Galois module structure. Bull. London Math. Soc., 24, 236-242 (1992).
[2] Childs, L.: The group of unramified Kummer extensions of prime degree. Proc. London Math. Soc., 35, 407-422 (1977).
[3] Ichimura, H.: Note on the ring of integers of a Kummer extension of prime degree, V. Proc. Japan Acad., 78A, 76-79 (2002).
[4] Kawamoto, F.: On quadratic subextensions of ray class fields of quadratic fields mod \mathfrak{p}. J. Number Theory, 86, 1-38 (2001).
[5] Kawamoto, F.: Normal integral bases and strict ray class groups modulo 4. J. Number Theory, 101, 131-137 (2003).
[6] Kawamoto, F., and Odai, Y.: Normal integral bases of ∞-ramified abelian extensions of totally real number fields. Abh. Math. Sem. Univ. Hamburg, 72, 217-233 (2002).
[7] Massy, R.: Bases normales d'entiers relatives quadratiques. J. Number Theory, 38, 216-239 (1991).
[8] Ono, T.: An Introduction to Algebraic Number Theory. Plenum Press, New York-London (1990).

[^0]: 2000 Mathematics Subject Classification. 11R33.
 ${ }^{*)}$ Department of Mathematics, Faculty of Sciences, Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027.
 **) Department of Mathematics, Faculty of Sciences, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo 1718588.

