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Zetas and moments of finite group actions
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Abstract: We introduce and study two kinds of zeta functions ζ(u;G,X) and Z(u;G,X)
as well as moments m(k;G,X) attached to a given finite group action G � X. We show that zeta
functions determine the moments, and moments determine the multiple transitivity of the action.
In the symmetric group case we give an explicit formula of moments and calculate zeta functions
of the infinite symmetric group S∞.
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1. Introduction and preliminaries. In
this paper we introduce and study two kinds of zeta
functions attached to finite group actions.

We first recall the definition of a zeta function
attached to a shift dynamical system [5]. Let X be
a finite set. Denote by XZ the set

XZ :=
{
(xn)n∈Z

∣∣ xn ∈ X
}

of all sequences in X indexed by Z. The shift oper-
ator ∆ on XZ is a map defined by

XZ � x = (xn)n∈Z

�→ ∆(x) = (xn−1)n∈Z ∈ XZ.

The pairing (∆, XZ) defines a discrete dynamical
system called a full shift. For arbitrary ∆-invariant
subset S of XZ, the pairing (∆S , S) also defines a
dynamical system called a subshift where ∆S is the
restriction of ∆ on S.

Assume that an equivalence relation ∼ on XZ

is given. We further suppose that the relation ∼ is
compatible with the shift operator ∆, that is, x ∼ y

implies ∆(x) ∼ ∆(y). Then, for any given subshift
(∆S , S), we can define a dynamical system (∆O,O)
on a quotient set O = S/∼. We call this a quotient
shift. When ∼ is the equality ‘=’, a quotient shift
is nothing but a subshift itself.

Let (∆O,O) be a quotient shift of (∆, XZ). De-
note by fix(f) the number of fixed points

fix(f) := #
{
y ∈ Y ∣∣ f(y) = y

}
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of a map f : O → O. The zeta function of a
quotient shift (∆O,O) is defined by

ζ(u;O) := exp

( ∞∑
k=1

fix(∆k
O)
uk

k

)
.

Group actions and induced dynamical
systems. Let G be a finite group acting on a fi-
nite set X. We introduce two kinds of zeta fnctions
attached to the action G � X. These are defined
as zeta functions attached to quotient shifts of XZ

which reflect the existence of a group action as we
see in the following.

First one is a subshift (∆C(G,X), C(G,X)) de-
fined by

C(G,X) :=
{
(gnx)n∈Z ∈ XZ

∣∣ g ∈ G, x ∈ X}.
Namely, this subshift (∆C(G,X), C(G,X)) is con-
sisting of elements which have periodicity coming
from the group action. We denote by ζ(u;G,X)
the attached zeta function, that is, ζ(u;G,X) :=
ζ(u; C(G,X)).

Second one is a quotient shift OG,X = XZ/∼
of the full shift XZ, where the relation ∼ on XZ is
defined by

x ∼ y
def⇐⇒ x = g.y (∃g ∈ G).

It is easy to see that this relation ∼ is compatible
with ∆. We denote by Z(u;G,X) the attached zeta
function, that is, Z(u;G,X) := ζ(u;OG,X). In this
case it is better to deal with a modified log-derivative

Ξ(u;G,X) :=
1
u2

Z′

Z

(
−1
u

;G,X
)

instead of the zeta function Z(u;G,X) itself.
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Moments and moment generating func-
tions. Assume that a finite group action G � X

on a finite set is given. We put Perr(g;G,X) :={
x ∈ X

∣∣ grx = g, gjx �= x (0 < j < r)
}
, and

we denote by perr(g;G,X) := # Perr(g;G,X) the
number of strictly r-periodic points of g. We also
put fix(g;G,X) := per1(g;G,X), the number of fixed
points of g.

We define the k-th moment and k-th factorial
moment of level r for an action G � X by

mr(k;G,X) :=
1

#G

∑
g∈G

perr(g;G � X)k,

mr(k;G,X) :=
1

#G

∑
g∈G

perr(g;G � X)k
,

for k ∈ N. Here we put ak := a(a−1) · · · (a−k+1).
It is convenient to put mr(0;G,X) = mr(0;G,X) =
1. When r = 1, we often omit the suffix and simply
write as m(k;G,X). We remark that mr(k;G,X) =
0 whenever kr > #X. We introduce the following
generating function

Mr(z;G,X) :=
∑
g∈G

(1 + z)perr(g)

#G
,

and we call this the moment polynomial.
For abbreviation we will omit the symbolsG and

X when they are obviously specified in the context.
2. Euler product. In this section we show

several typical properties of zeta functions defined as
above.

First we see that the zeta function ζ(u;G,X) of
a subshift (∆C(G,X), C(G,X)) has an Euler product
expression and determinant expression as expected.
First we prepare several conventions.

Definition 2.1. Let G � X be a given group
action.
(1) A finite sequence c = (xj)l−1

j=0 in X is called a
closed path if there is some element g ∈ G

such that c is invariant up to cyclic permutations
under the action of g. A closed path c is called
prime if c consists of distinct members.

(2) Two closed paths are defined to be equivalent
if and only if they coincide up to cyclic permu-
tation. An equivalence class C of this relation
is called a closed geodesic in X. A closed
geodesic C is called prime if a representative
of C is prime.
Denote by Prim(X) the set of all primitive

geodesics on X. We also denote by l(C) the num-

ber of entries of a representative c ∈ C and call the
length of C. Under these conventions, the Euler
product expression of a zeta function ζ(u;G,X) is
given as follows:

Theorem 2.1 (Euler product expression).
The zeta function ζ(u;G,X) for a given finite group
action G � X has the following expression.

ζ(u;G,X) =
∏

C∈Prim(X)

(1− ul(C))−1

=
∞∏

l=1

(1− ul)−Q(l)/l.

(2.1)

Here we denote by Q(l) = Q(l;G,X) the number of
prime paths with length l.

Proof. Since the number of elements in
C(G,X) of a minimal period d is also given by Q(d),
we have

#Ck(G,X) =
∑
d|k

Q(d).

Thus it follows that

ζ(u;G,X) = exp

( ∞∑
k=1

#Ck(G,X)
uk

k

)

= exp

( ∞∑
k=1

(∑
d|k

Q(d)
)uk

k

)

= exp

( ∞∑
l=1

∞∑
k=1

Q(l)
ulk

lk

)

=
∞∏

l=1

(1− ul)−Q(l)/l ,

which is the desired expression. Here we use the for-
mula

∞∑
k=1

∑
w∈W

L(w)|k

f(k) =
∑

w∈W

∞∑
d=1

f(L(w)d)

for a countable set W and a map L : W → N.
Remark 2.1. The zeta function Z(u;G,X)

does not have such an Euler product expression be-
cause Z(u;G,X) is defined for a (non-trivial) quo-
tient shift, not a subshift. In fact, if the relation ∼ is
non-trivial, the manipulation used in the proof above
does not work.

Denote by L(X) the C-linear space consisting
of C-valued functions on a set X. If X is a G-set,
L(X) naturally gives a representation ofG. The shift
operator ∆C(G,X) extends to a linear transformation
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on L(C(G,X)), which is compatible with the action
of G.

Theorem 2.2 (Determinant expression). The
zeta function has a determinant expression

(2.2) ζ(u;G,X) = det(1− u∆C(G,X))−1.

Proof. This is immediate from the Euler prod-
uct expression and the following elementary formula∣∣∣∣∣∣∣∣∣∣∣

1 −u
−u 1

−u 1
. . . . . .

−u 1

∣∣∣∣∣∣∣∣∣∣∣
= 1− un.

3. Zeta functions and moments. Next we
see the relation between zeta functions and mo-
ments. As we see in the following, the zeta func-
tion ζ(u;G,X) essentially determines the multiple
transitivity of attached action G � X in view of
Theorem 3.4.

Proposition 3.1. For any given action G �

X, we have

Q(l;G,X) =
∑
g∈G

∑
x∈X

1
#Gx(g)

δ(g; l, x).(3.1)

Here we put

δ(g; l, x) =

{
1 x ∈ Perl(g;G,X),
0 otherwise,

Gx(g) =
∞⋂

j=0

Ggjx

for g ∈ G, x ∈ X, l ∈ N.
Proof. Two prime paths (x, gx, . . .) and

(x, hx, . . .) are equal if and only if gjx = hjx (⇐⇒
g−jhj ∈ Gx) (j ≥ 1). Since

gjx = hjx = h(hj−1x) = h(gj−1x)

⇐⇒ g−1h(gj−1x) = gj−1x,

every gjx is a fixed point of g−1h. This implies that
g−1h ∈ Gx(g) =

⋂∞
j=0Ggjx, which is equivalent to

the equality Gx(g) = Gx(h). Thus we have

Q(l;G,X) =
∑
x∈X

∑
g∈G

1
#Gx(g)

δ(g; l, x).

This completes the proof.
Theorem 3.2. A group action G � X is k-

transitive only if mk(1;G,X) = 1.

Proof. Assume G � X is k-transitive. Denote
by Xk the subset of Xk consisting of elements with
distinct entries. When δ(k; g, x) = 1, the sequence
{x, gx, . . ., gk−1x} consists of distinct k members,
which implies that the subgroup Gx(g) is nothing
but the stabilizer of the element (x, gx, . . . , gk−1x) ∈
Xk under the induced action G � Xk, which is tran-
sitive by assumption of k-transitivity. Therefore we
have

(3.2) Xk ∼= G/Gx(g) =⇒ #Xk =
#G

#Gx(g)
.

We also notice that Q(k;G,X) = #Xk if G �

X is k-transitive. In fact, for any sequence c =
(x1, . . . , xk) consisting of distinct k members, there
exists an element g ∈ G such that gxi = xi+1

(1 ≤ i < k), gxk = x1, which means Q(k;G,X) =
(#X)k = #Xk.

Since

perk(g;G,X) =
∑
x∈X

δ(k; g, x),

we have

mk(1;G,X)− 1

=
1

#G

∑
g∈G

perk(g;G,X)− 1
#Xk

Q(k;G,X)

=
1

#Xk

∑
g∈G

∑
x∈X

(
#Xk

#G
− 1

#Gx(g)

)
δ(k; g, x),

which is 0 by (3.2).
Another zeta function Z(u;G,X) is directly

connected with the multiple transitivity of attached
action. Actually, Z(u;G,X) has a following expres-
sion as a generating function of moments.

Theorem 3.3 ([2]). We have

(3.3) Z(u;G,X) = exp

( ∞∑
k=1

m(k)
uk

k

)
.

From the expression (3.3) of Z(u;G,X), the
modified log-derivative Ξ(u;G,X) is calculated as
follows:

Ξ(u;G,X) =
1
u
− 1

#G

∑
g∈G

1
u+ fix(g)

= −1
u

∞∑
j=1

m(j)
(−1)j

(u+ 1)j
.

Here we denote by (a)k := a(a+1) · · · (a+k−1) the
Pochhammer’s symbol.
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The moments are used to describe criteria of
multiple transitivity of finite group actions.

Theorem 3.4 ([2]). Suppose that a finite
group action G � X is given, Then the following
conditions are equivalent for every k ≤ #X.

(a) G � X is k-transitive.
(b) G � Xk is transitive.
(c) m(k;G,X) = βk.
(d) m(k;G,X) = 1.
(e) M(k)(0) = 1.

Here we denote by βk :=
∑k

j=0

{
k
j

}
the k-th Bell

number.
4. Zeta functions of abelian group ac-

tions. In general, the zeta function of the action
G � G is given by

(4.1) ζ(u;G,G) =
∞∏

l=1

(1− ul)−
ψ(l,G)
l #G

where ψ(l, G) denotes the number of elements in G

with order l. In fact, for any g0 ∈ G, two paths
(g0, gg0, . . .) and (g0, g′g0, . . .) are different if g �= g′,
and their length are given by the order of g, g′. When
G is abelian, we can determine ψ(l, G) by the funda-
mental theorem of finite abelian groups.

Lemma 4.1. If G is a finite abelian group of
type (α1, α2, . . . , αk), then we have

ψ(d, G) =
∑

r1|α1,r2|α2,...,rk|αk
lcm(r1,r2,...,rk)=d

ϕ(r1)ϕ(r2) . . .ϕ(rk).

Here ‘lcm’ stands for the least common multiple.
Proof. When g = (g1, . . . , gk) ∈ G is of or-

der d, we have gd
j = 1 for each j, that is, the or-

der of gj divides d. Conversely, if the order of gj is
equal to rj, the order of g = (g1, . . . , gk) is equal to
lcm(r1, r2, . . . , rk).

For a general transitive action G � X ∼= G/H

of a finite abelian group G, we see that Ker(G,X) =
H . Since it is clear that C(G,X) = C(G/H,X), we
notice

ζ(u;G,X) = ζ(u;G/H,G/H).

Thus all zeta functions of abelian group actions are
determined, and we have the

Theorem 4.2. Let Gj � Xj (j = 1, 2) be
transitive actions of finite abelian groups. Then we
have

ζ(u;G1, X1) = ζ(u;G2, X2)

⇐⇒ G1/Ker(G1, X1) ∼= G2/Ker(G2, X2).
(4.2)

Remark 4.1. This result is not true in general
if G is not abelian.

Remark 4.2. The zeta function Z(u;G,X)
attached to a transitive action G � X of a finite
abelian group G is given by

Z(u;G,X) = (1− u#X)−1/#X .

In fact, it is easy to see that m(k;G,X) = (#X)k−1.
Hence, this zeta function Z(u;G,X) cannot distin-
guish the group actions even in the case of abelian
groups.

5. Calculation of infinite symmetric
group case. If we think of the action S∞ � [∞] =
N, the definitions of the zeta functions ζ(u; S∞, [∞])
and Z(u; S∞, [∞]) do not make sense. Therefore, if
we want to deal with such a case, we need some mod-
ification. One way to obtain a zeta function of S∞ is
to take a normalized limit of zeta functions for finite
symmetric groups Sn.

The zeta function ζ(u; Sn, [n]) of Sn � [n] =
{1, 2, . . . , n} is given by

(5.1) ζ(u; Sn, [n]) =
n∏

k=1

(1− uk)−nk/k.

In fact, every distinct k-members (x1, . . . , xk) in [n]
realize a prime geodesic on [n], which means that
the number of prime geodesics of length k is given
by (1/k)

(
n
k

)
= (nk/k). It follows that

ζ(u/n; Sn, [n]) =
n∏

k=1

(
1− uk

nk

)−nk/k

n→∞−−−−→
∞∏

k=1

exp
(
uk

k

)
= (1− u)−1,

which is not very interesting.
On the other hand, the function Ξ(u; Sn, [n])

has a limit when n→∞ as follows:
Theorem 5.1. The sequence {Ξ(u; Sn, [n])}∞n=1

converges absolutely and uniformly on any compact
domain in C. The limit function

Ξ(u; S∞) := lim
n→∞Ξ(u; Sn, [n])

have the expression

(5.2) Ξ(u; S∞) =
1− 1F1(1; u+ 1;−1)

u
.

Here 1F1(a, c; z) is the confluent hypergeometric
function of Kummer’s type
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1F1(a; c; z) :=
∞∑

n=0

(a)n

(c)n

zn

n!
.

For the proof and further properties, see [2].

6. Moments of symmetric groups. We
recall briefly the basic notions on the symmetric
groups.

Conjugacy classes of the symmetric group Sn

are labeled by the cycle type. An element in Sn

is said to be of type 1p12p2 · · ·npn when it is decom-
posed into a disjoint product of p1 1-cycles, p2 2-
cycles, . . . , and pn n-cycles. Two elements in Sn are
conjugate if and only if they are of the same type.
We also denote by 1p12p2 · · ·npn the corresponding
conjugacy class. The set of all conjugacy classes of
Sn is denoted by Conj(Sn). It is clear by definition
that

perr(σ;n) = rpr if σ ∈ 1p12p2 · · ·npn .

In particular, the function perr( · ;n) is a class func-
tion.

Irreducible representations of Sn are parame-
trized by Young diagrams with n boxes. The ir-
reducible character corresponding to a diagram λ is
denoted by χλ. We denote the trivial character of
Sn by 1n. Let Z(Sn) be the set of integral linear
combinations of irreducible characters of Sn, which
is a subring of the group algebra C[Sn]. Recall that
C[Sn] possesses a canonical invariant inner product

〈f1, f2〉n :=
1
n!

∑
σ∈Sn

f1(σ)f2(σ).

The k-th moment mr(k;n) is then expressed as

mr(k;n) = 〈perr( · ;n)k, 1n〉n.
It is thus natural to generalize the situation and
study weighted moments. In fact, we can enumer-
ate the character-weighted moments

mλ
r (k;n) := 〈perr( · ;n)k, χλ〉n

for any Young diagram λ.
Our desired enumeration for weighted moments

is given as follows:

Theorem 6.1. For any n, k, r ∈ N and any
Young diagram λ with n boxes, the character-
weighted k-th moment is given by

(6.1) mλ
r (k;n) =

∑
0<rj≤n

{
k

j

}
rk−jR

(rj)
λ(n−rj).

The number Rη
λµ (|λ| = |µ| + |η|) is given by the

“Murnaghan-Nakayama rule”

Rη
λµ =

∑
S

(−1)ht(S),

where S runs thorough all sequences of diagrams S =
(µ = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(m) = λ) with each λ(i) −
λ(i−1) a border strip of length ηi, ht(S) is the sum of
heights ht(λ(i)−λ(i−1)) of skew diagrams λ(i)−λ(i−1)

(for the precise meaning, see [4]). In particular, the
moment of level 1 is expressed by the Kostka numbers
Kλµ as

(6.2) mλ(k;n) =
n∑

j=1

{
k

j

}
Kλ(n−j,1j).

Remark 6.1. This Rη
λµ represents also the co-

efficients of the Schur function sλ(x) in the expansion
of the product pη(x)sµ(x):

pη(x)sµ(x) =
∑

λ

Rη
λµsλ(x),

where pη(x) is the power-sum symmetric function
(see [4, p. 48]).

Proof of Theorem 6.1. Consider the set

Conjr(Sn) =
{
1p1 · · ·npn ∈ Conj(Sn)

∣∣ pr > 0
}
.

Notice that the support of perr( · ; Sn, [n]) is
Conjr(Sn). Using the bijection

pr : Conjr(Sn) � 1p12p2 · · ·rpr · · ·
�−→ 1p12p2 · · · rpr−1 · · · ∈ Conj(Sn−r),

we define the map πr : Z(Sn) → Z(Sn−r) by

(πrχ)(C) := χ(p−1
r (C)).

In our notation, the Murnaghan-Nakayama for-
mula is regarded as the one which describes the ir-
reducible decomposition of πrχ

λ:

(6.3) πrχ
λ =

∑
µ

(−1)ht(λ−µ)χµ,

where µ runs through the diagrams of n − r boxes
such that λ − µ is a border strip.

Remark 6.2. The Murnaghan-Nakayama for-
mula can be obtained by calculating the adjoint op-
erator π∗

r .
Let ψ(k)(σ;n, r) be the k-th factorial-type prod-

uct of perr( · ;n)’s:

ψ(k)(σ;n, r) :=
k−1∏
j=0

(perr(σ;n)− rj) .
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It is elementary to check the following identity (see
e.g. [1]):

(6.4) perr(σ;n)k =
k∑

j=1

{
k

j

}
rk−jψ(j)(σ;n, r).

Consequently, in order to show the theorem, it is
enough to calculate the values of the inner products
〈ψ(j), χλ〉n in general. In order to achieve this, we
deduce a recurrence relation of ψ(j)’s as

〈ψ(j)(n, r), χλ〉n = 〈ψ(j−r)(n− r, r), πrχ
λ〉n−r.

Using the relation above successively, we have

(6.5) 〈ψ(j)(n, r), χλ〉n = 〈1n−rj, π
j
rχ

λ〉n−r.

Applying now the Murnaghan-Nakayama formula
(6.3), we get

(6.6)

〈1n−rj , π
j
rχ

λ〉n−rj =
∑
S

(−1)ht(S) = R
(rj)
λ(n−rj).

This completes the proof of Theorem 6.1.
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