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Abstract:

We consider cohomology sets and exact sequences of groups with involutions.

In particular,we study congruence subgroups of type I'g(m) which are acted by the group generated

either by the map z — (—1/mz) of the upper half plane or by the map = +— (1/mz) of the set of

irrational real numbers.
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1. Groups with involutions. Let G be a
group and * be an involution on it: (ab)* = b*a*,
a** =a, a,b € G. Consider the subgroup of unitary
elements of G

UG) ={aeG; a*a=1}
and a subset of symmetric elements of G
S(G):={a€G; a" =a}.

The group G acts on S(G) to the right: a — aog :=
g*ag. We denote the orbit space of this action by

H(G) := S(G)/G.

The orbit 1¢ o G is the origin of the space H(G).
Let G’ be another group with an involution . A

homomorphism G — G’ commuting with involutions

induces following maps with obvious nice properties:

UG) — UG, S(G)— S(G), H(G) — H(G).

Now let N be a normal subgroup of G stable under
an involution * of G : N* = N. Then one can speak
of an involution * of G/N : (aN)* = a*N. The short
exact sequence

1-N—G—G/N—-1

induces naturally the exact sequence of spaces with
origins:

1 — UN) — U(G) — U(G/N) - H(N)
— H(G) — H(G/N),
where the map § is given by

U(G/N) > aN — (a*a) o N € H(N).
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The exactness can be checked easily. [If one lets the
group g = (s) of order 2 act on a group G with * by
a® =a"* := (a*)"!, then the exactness follows from
a basic theorem of nonabelian cohomology ([3]). In
case of involutions, however, one needs only geomet-
ric language like orthogonality and symmetry instead
of cocycles etc.]

Every group G has a built-in involution ¢ : a —
a~'. Any involution * of G can be written * = ¢
with an automorphism ¢ of G. For that matter, any
pair (o, 3) of involutions of a group determines an
automorphism o so that a = of3.

2. GroupsT',(m). Here isa scenario where
G is a group of matrices whose involution * is closely
related to the transposition of matrices. To be more
precise, let R be a subring of a field €2 containing 1 =
1g. Consider a matrix U € GL,(Q2) and a subgroup
G C SL,(R) such that

Ul=U, U 'GU=G":={A":AcG)}.
Then we set

A*=UAU, Aeq.

Since the map A — A* is an involution of G, we can

speak of U(G), S(G) and H(G) as in Section 1.
Now, let R = Z,Q2 = Q and n = 2. For a

nonzero integer m and an integer v > 0 we set

Ty(m) = {A: [TZC Z], a,b,c,deZ,

detA=1, a*=1 (mod m)}

Note that, when m > 0, T'o(m), T'1(m) are compat-
ible with the conventional notation for congruence

groups. Each T',(m) is normal in T'g(m). Needless
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to say, the group I',(m) depends only on the class of
v modulo ¢(|m|). As for the matrix U, we put

1 0
U_[O —-m

:| € GL, (Q)
Then, we find that
U, (m)U =T%(m) :=T,(m)".

Consequently
* trr—1 __ a —C
A— A* =UAU _[—mb d]

defines an involution of ', (m).

Here are descriptions of U(G), S(G), H(G) for
G =T,(m).

() U, (m)).

usm) ={a=| 1 .

mb a

One verifies that

a®>—mb*=1,a"=1 (mod m)}

So if m < 0 or square, U(T', (m)) is a finite group and
if mm > 0 and nonsquare, it is an infinite group iso-
morphic to the group of Pell’s equation a? — mb? =
1 (v even) or its subgroup with @ = 1 (mod m)
(v odd).

(ii) STy (m)).

(i) H(T,(m)) = ST, (m))/T, (m) =
I'y,(m)}, where AoT = T*AT, A € S(T,(m)),
TeT,(m).

3. A reduction theorem. As an applica-
tion of the exact sequence in Section 1, we shall prove
a theorem on the group I',(m) introduced in Sec-
tion 2. Let us start with a short exact sequence:

1-N—G—G —1
where G = I'o(m), N = T',(m), G' = ((Z/mZ)*)".

The involution * introduced in Section 2 for G in-
duces the one on the normal subgroup N and so on
G/N =~ G'. We have

UG)={aeG :a? =1},

S(G") =G, H(G)=G/(G)

and the exact sequence
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1 — UN) 5 UG) 2 UG - H(N)
S H(G) L H(G.

By the reduction we mean to find an N so that § :
UN)ZU(G) and € : H(N) = H(G). As for U, the
matter is trivial because

UN)2UG) <= rv=0 (mod 2).

So we will search even v so that H(N) = H(G).
Actually it turns out that the choice

v=29 with ¢(lm|)=2%h, h=1 (mod2)

is good to make € bijective. [Note that g = 0 only
when m = =£1, or 42 and the matter is trivial in
these cases.]

(i) e is injective.
H(G) is given by

By definition, € : H(N) —

a b
—-mb d|’

(mod m).
So we need to show that, for A, A’ € S(N), A’ oG =

Ao G implies A’ o N = Ao N. Now the assumption
means that

AoNwr— AoQG, A:[

ad+mb’> =1, a’"=1

t U

A =T*AT, T= [
muv w

] , tw—muv =1.
Reducing the relation T*A = A’T~! modulo m, we
find ta = wa’ (mod m) where o’ is the (1,1) com-
ponent of A’. Since ¥ = a’¥ =1 (mod m) we have
v = w” (mod m). We have also t* = 1 (mod m).
As o(m) = v-h with h odd, we conclude that t¥ =1
(mod m), which means that T € N, q.e.d.

(ii) € is surjective. Since Ime = Kern it is
enough to prove that 7 is trivial. In other words,
having

_ a b 2
A_[_mb d], ad+mb? =1, AeS(G)

in mind, we shall show that:

For any a € Z, (a,m) = 1, there is an integer x
s0 that a¥ = 2?¥ (mod m).

In fact, one reduces the proof of this to the case
where |m| = p© a power of a prime p. If p = 2, then
©(2¢) = 2¢7t = v, with h = 1, i.e., N = G and the
matter is trivial. If p # 2, then, with a primitive
root r modulo p°, write a = r* (mod p°), x = ré
(mod p€). Then one has to solve

va=2vf (mod ¢(p%)).
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As p(p®) = p*~Y(p — 1) = vh, h odd, where v = 29,
with g > e, we are reduced to solve

a=2¢ (modh)

which has certainly a solution because h is odd,
q.e.d.

Summing up our arguments:

Theorem. Notation being as in Section 3, let
o(|m|) = 29h, h odd. Then

U(To(m)) = U(Ta9(m)), H(To(m)) = H(Izs(m)).

4. Certain real quadratic fields. To avoid
technical complications, we shall assume from now
on that m is a positive squarefree integer such that
m =3 (mod 4). Let k = Q(y/m), the quadratic field
corresponding to m. Since m = 3 (mod 4), 1,/m
form the standard basis of the ring oy of integers of
k with the discriminant 4m. The assumption implies
also that the group or™ of units of k is identical with
the solutions of Pell’s equation £2 —my? = 1. Denote
by H ,j the ideal class group in the narrow sense of
k. There is a well-known bijection

ix : H 2= ®(4m)/ SLy(Z),
®(4m) := {f = ax® + by + cy?;
a,b,c € Z, b* — dac = 4m)}.

Now back to materials in Section 2, for the integer

m above, put
], A= [ “ b] € To(m),

1 0
U_[O —-m me d

A" =UAUL.
Then we have three sets
UTo(m)), STo(m)), H(To(m)).

First of all, we have U(To(m)) = op*.
Next, observe that there is a map from
x-symmetric  matrices to  quadratic

S(To(m)) — ®(4m) defined by

forms:

S(To(m)) > A = [_Zlb Z]
— AU : az® — 2mbxry — mdy® € ®(4m).
This map then induces a bijection:
7 H(To(m)) = Hyt.

The proof of this important fact on real quadratic
fields follows mutatis mutandis from that of theorems
on imaginary quadratic fields in [1, 2].
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5. To(£) and I'1(£). The reduction theorem
in Section 3 cannot compare I'y(m) with I'y(m) ex-
cept m = +1, £2. Here we shall compare their ¢/ and
H in a special case. So let ¢ be a prime = 3 (mod 4).
Let k = Q(\/Z) As for U, we have

UTo(L) = o™
By definition

a b .
I’l(é)—{A— [Ec d] , a=1 (mod 5)} C To(¥).
Hence, from (i) in Section 2, we have

U1 (6))

~{(a,b) € Z% o> — 00> =1, a=1 (mod /)}.

If (a, b), a solution to the Pell’s equation, is such
that @ = —1 (mod ¢), then (—a,—b) is one in the
subgroup U(T'1(¢)). This means that

UTo(0)) 2 Z/2Z x U(T1(0)).

As for H, using the Legendre character a — (a/{),
we split the set S(T'o(¢)) into two disjoint parts:

S(To(£)) = S*(To(€)) US™ (T (0)),

S*(To(0))
_ {A: [_Czb Z] e so), (§) = il}.

Since (at?/f) = (a/l), a,t € (Z/IZ)*, we see easily
that ST (I'y(¥)) are stable under the action of T'g(¢).
Consequently, we obtain the following natural split-
ting:

H(To(6)) = HF (To(6)) UK (To()),
where  HE(To(0)) := SE(To(€))/To ().
For a € (Z/0Z)* we have

—a\ (-1 ay a

(#)-(7)()--6)
because £ = 3 (mod 4). Therefore A € ST (T (¢)) if
and only if —4 € & (T'9(¢)). Hence tHT([o(¢)) =
fH~(To(¢)). The basic bijection 7 in Section 4 im-
plies that #H(To(¢)) = $H, T = hy ™. If we put hy, =
#H}, then we have hy, T = 2h;, when ¢ = 3 (mod 4).
Consequently we obtain

fHY (To(0)) = hy.

Since (a/f) = 1 when a =
S(T1(0) € 87 (To(0)).

1 (mod ¢), we have
This induces naturally the
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following map
et T HT1(0) — HT(Do(0)).

We claim that et is bijective.
(i) €* is injective. Let

[ a b ,ad
A= = a]

be matrices in S(T'y(¢)) such that

t

A'=T*AT, T = [
v

u
w:| el (@)
Reducing the relation 7*A = A’T~!' modulo ¢, we
obtain ¢t = w (mod ¢) since a = a’ =1 (mod ¢). On
the other hand, we have tw — fuv = 1, so tw = 1
(mod /). Hence t* =1 (mod ¢) or t = +1. If t = —1
(mod £), then, on replacing T by —T', we can assume
that t =1 (mod ¢). This means T € I';(¢); in other
words, €T is injective.

(i) €' is surjective.
Take a matrix

A= [_Czb Z] e S*(To(0)).

We should find an A’ € S(T'1(¢)) so that A’ = T*AT
for some T € T'g(¢). Now, by the assumption on A,
there is a t € (Z/¢Z)* such that at?> = 1 (mod /).

[Vol. 78(A),

Next, find u, w so that tw — fu = 1 and put

T - [t Z] € To(0).

Then we find
" ot -1 a b t u
TAT:[O w] [o d] [o w]

Clat? x| [1
- [ 0 *] - [0
ie, T*AT = A" eT1(¢), q.ed.
Summarizing, we have proved
Theorem. Let ¢ be a prime # 2, = 3
(mod 4), k = Q(v¥) and hy, the class number of k.
Then we have

’{] (mod ¢),

tH(T1(0) = hy.
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