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Characterizations of space forms by circles on their geodesic spheres

By Toshiaki Adachi
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Abstract: In this paper we characterize space forms by observing the extrinsic shape of
circles on their geodesic spheres.
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1. Introduction. A smooth curve γ on a
complete Riemannian manifold M parametrized by
its arclength is called a curve of order 2 if it satisfies
the following nonlinear differential equation:

(C)

‖∇γ̇ γ̇‖2
{
∇γ̇∇γ̇ γ̇+‖∇γ̇ γ̇‖2γ̇

}
= 〈∇γ̇ γ̇,∇γ̇∇γ̇ γ̇〉∇γ̇ γ̇,

where ∇γ̇ denotes the covariant differentiation along
γ with respect to the Riemannian connection ∇ on
M . Typical examples of curves of order 2 are cir-
cles and plane curves. We call a smooth curve γ

parametrized by its arclength a circle if it satisfies
∇γ̇∇γ̇ γ̇ = −k2γ̇ with some nonnegative constant k.
This condition is equivalent to the condition that
there exist a nonnegative constant k and a field of
unit vectors Y along this curve which satisfy ∇γ̇ γ̇ =
kY and ∇γ̇Y = −kγ̇. The constant k is called the
curvature of γ. As we see k = ‖∇γ̇γ̇‖, we find cir-
cles are curves of order 2. Also we see geodesics are
treated as circles of null curvature. A smooth curve
is said to be a plane curve if it is locally contained
on some real 2-dimensional totally geodesic subman-
ifold. On a space form M(c), which is either one of a
standard sphere, a Euclidean space and a hyperbolic
space, circles are plane curves, but it is not true in
general (see [AMU] for circles on a complex projec-
tive space). Thus the class of curves of oder 2 is a
wide class. For more detail we study in Section 2.

The aim of this paper is to characterize space
forms in terms of the extrinsic shape of geodesics
and circles on geodesic spheres in these spaces. In a
space form M(c), every geodesic sphere is a totally
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umbilic but not totally geodesic hypersurface with
parallel second fundamental form. This tells us that
every circle on each geodesic sphere is a circle in the
ambient manifold M(c). Motivated by this fact, we
here establish characterizations of space forms from
the viewpoint of their geodesic spheres. In the pre-
ceding paper[AM], we characterize space forms by
observing the extrinsic shape of geodesics on their
geodesic spheres. Our results are extensions of this
result.

2. Curves of order 2. We devote this sec-
tion to study some fundamental properties of curves
of order 2. A smooth curve γ = γ(s) parametrized
by its arclength s is called a Frenet curve of order 2
in the wider sense if there exist a smooth unit vec-
tor field Y along γ which is orthogonal to γ̇ and a
smooth function κ satisfying

(F)

∇γ̇γ̇(s) = κ(s)Y (s) and ∇γ̇Y (s) = −κ(s)γ̇(s).

We shall call κ the curvature function. When we
can take κ as a positive function, we call γ a Frenet
curve of proper order 2. For a Frenet curve of proper
order 2 the function κ and the orthonormal frame
{γ̇, Y } are called its curvature and Frenet frame, re-
spectively. Trivially a circle of positive curvature is
a Frnet curve of proper order 2. It is also clear that
every geodesic is a Frenet curve of order 2 in the
wider sense with an arbitrary parallel unit vector
field along this geodesic which is orthogonal to the
tangent vector field. For consistency, we call a curve
a Frenet curve of order 2 if it is either a geodesic or
a Frenet curve of proper order 2.

Lemma 1. If a curve γ of order 2 satisfies
‖∇γ̇γ̇(s)‖ > 0 for all s, then it is a Frenet curve
of proper order 2, whose curvature and Frenet frame
are κ(s) = ‖∇γ̇ γ̇(s)‖ and

{
γ̇, Y = ∇γ̇ γ̇

/
‖∇γ̇γ̇‖

}
,
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respectively.
Proof. If we put κ(s) = ‖∇γ̇γ̇(s)‖, we have

κκ′ = 〈∇γ̇ γ̇,∇γ̇∇γ̇γ̇〉. Therefore by the equation
(C) the vector field Y = (1/κ)∇γ̇γ̇ satisfies

∇γ̇Y =
1
κ3

(
κ2∇γ̇∇γ̇ γ̇ − κκ′∇γ̇ γ̇

)
= −κγ̇,

which leads us to the conclusion.
Following this lemma, for a curve γ of order 2 we

shall call the nonnegative function ‖∇γ̇ γ̇‖ its curva-
ture. It should note that we admit a curve γ of order
2 to have points where ∇γ̇ γ̇ vanishes. For a curve of
order 2 we call such a point an inflection point, and
call an ordinary point if it is not an inflection point.
A cubic curve y = x3 on a Euclidean xy-plane is a
good example of Frenet curve of order 2 in the wider
sense. One can easily find that the origin is an inflec-
tion point. We have to take care of treating inflection
points.

Lemma 2. (1) Every Frenet curve of order
2 in the wider sense is a curve of order 2.

(2) Every smooth plane curve parametrized by
its arclength is also a curve of order 2.

Proof. (1) By definition we find a Frenet
curve γ of order 2 in the wider sense satisfies the
following:

∇γ̇∇γ̇ γ̇(s) = ∇γ̇

(
κ(s)Y (s)

)
= −κ′(s)Y (s) − κ2(s)γ̇(s).

This guarantees that γ satisfies eq. (C).
(2) Let γ be a smooth plane curve para-

metrized by its arclength. For each s0 we have
a real 2-dimensional totally geodesic submanifold
S and positive number δ such that the restriction
γ|(s0−δ,s0+δ) lies on S. We then have a local smooth
unit vector field V along γ|(s0−δ,s0+δ) which is
orthogonal to γ̇ and is tangent to S. Since ‖γ̇‖ =
‖V ‖ = 1, we see 〈γ̇, V 〉 = 〈V,∇γ̇V 〉 = 0. Since S
is 2-dimensional and totally geodesic, we see ∇γ̇ γ̇ is
proportional to V and ∇γ̇V is proportional to γ̇. By
differentiating 〈γ̇, V 〉 = 0, we find ∇γ̇ γ̇ = νV and
∇γ̇V = −νγ̇ with a function ν . As the argument in
(1) stands locally we obtain the conclusion.

When γ is a Frenet curve of order 2 in the wider
sense and is not a geodesic, since Y is parallel on each
interval consisting of inflection points,the pair (κ, Y )
is determined up to their signatures, that is either
(κ, Y ) or (−κ,−Y ) satisfies eq. (F). In a Euclidean
space, each Frenet curve of order 2 in the wider sense
lies on some single plane. However, in general a plane

curve is not necessarily a Frenet curve of order 2 in
the wider sense. On the other hand, on a complex
projective space we have circles which are not plane
curves. Hence a Frenet curve of order 2 in the wider
sense is not necessarily a plane curve. Thus the no-
tion of curves of order 2 is an extention of both of
the notion of plane curves and that of Frenet curves
of order 2. We here give interesting examples.

Example 1. Let γ1 be a smooth curve in a
Euclidean space R3 defined by

γ1(t) =


(t, e−1/t2 , 0), t < 0,
(0, 0, 0), t = 0,
(t, 0, e−1/t2), t > 0.

When we reparametrize t to the arclength param-
eter s, the curve γ(s) satisfies eq. (C). This curve
is niether a plane curve nor a Frenet curve of or-
der 2 in the wider sense. We can not take a plane
which contains γ1 locally at the origin. Also the
origin is an isolated inflection point and we see
that we can not smoothly extend the vector field
∇γ̇ γ̇(s)

/
‖∇γ̇ γ̇(s)‖ (−ε < s < 0, 0 < s < ε) along

γ to the origin.
Example 2. We should note that a similar

curve in R3 defined by reparametrizing the curve

γ2(t) =


(t, e−1/(t+1)2, 0), t < −1,
(t, 0, 0), −1 ≤ t ≤ 0,
(t, 0, e−1/t2), t > 0,

is a plane curve which is not a Frenet curve of order
2 in the wider sense.

At an inflection point we should take care in
handling curves of order 2. For example, the differ-
ential eq. (C) may have a bifurcation point.

Example 3. Let γ3 be a smooth curve in a
Euclidean space R3 defined by

γ3(t) =

{
(t, e−1/t2, 0), t �= 0,
(0, 0, 0), t = 0.

When we reparametrize t to the arclength parameter
s, the curve γ3(s) also satisfies the eq. (C). Compar-
ing this with γ1(s) in Example 1, we find a solution
of (C) branches at the origin. We remark that the
origin is an isolated inflection point of these curves.
We also remark that the curve γ3 is a plane curve
and also a Frenet curve of order 2 in the wider sense.

On the contrary, we have the following result
on Frenet curves of order 2 in the wider sense in a
complete Riemannian manifold M . Let κ(s),−∞ <
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s < ∞ be a smooth function. Given a pair X, Y ∈
TxM of orthonormal vectors at an arbitrary point
x ∈ M , we have a unique Frenet curve γ of order 2
in the wider sense with curvature function κ and with
initial condition that γ(0) = x, γ̇(0) = X,∇γ̇ γ̇(0) =
κ(0)Y .

3. Characterizations of space forms.
Let Gp(r) be a geodesic sphere with center p ∈ M

and radius r. First we shall characterize a space
form Mn(c) of curvature c by observing the extrin-
sic shape of geodesics on a geodesic sphere Gp(r) with
sufficiently small radius r in Mn(c).

Theorem 1. Let M be a complete Rieman-
nian manifold of dimension greater than 2. Then
the following conditions are equivalent :
(1) M is a space form.
(2) For each point p ∈M there is a positive number

εp such that every geodesic on a geodesic sphere
Gp(r) of M is a circle of positive curvature in
M for each r with 0 < r < εp.

(3) For each point p ∈M there is a positive number
εp such that every geodesic on a geodesic sphere
Gp(r) of M is a plane curve in M for each r

with 0 < r < εp.
(4) For each point p ∈M there is a positive number

εp such that every geodesic on a geodesic sphere
Gp(r) of M is a Frenet curve of order 2 in the
wider sense in M for each r with 0 < r < εp.

(5) For each point p ∈M there is a positive number
εp such that every geodesic on a geodesic sphere
Gp(r) of M is a curve of order 2 in M for each
r with 0 < r < εp.
Proof. As was mentioned in Introduction, in

a space form M(c) every geodesic sphere Gp(r) with
radius smaller than the injective radius is totally um-
bilic. Hence geodesics on Gp(r) are circles in M(c).
Since circles on a space form are plane curves, in
view of Section 2, what we have to show is that (5)
implies (1).

Given an arbitrary point p ∈ M we consider
a geodesic sphere Gp(r) of sufficiently small radius.
For a unit tangent vector v ∈ TGp(r) we shall verify
one of the following conditions holds:

i) 〈Av, v〉 = 0,
ii) Av = λvv for some λv ∈ R,

where 〈 , 〉 is the Riemannian metric on Gp(r) and A
is the shape operator of Gp(r) in M . In order to see
this we suppose 〈Av, v〉 �= 0. Let γ = γ(s),−δ <
s < δ, be a geodesic segment on Gp(r) with ini-
tial condition that γ(0) = x, γ̇(0) = v and with

〈Aγ̇(s), γ̇(s)〉 �= 0 for all s ∈ (−δ, δ). We denote by
∇ and ∇̃ the Riemannian connections of Gp(r) and
M , respectively. By the Gauss and the Weingarten
formulae we have

∇̃γ̇ γ̇ = ∇γ̇ γ̇ + 〈Aγ̇, γ̇〉N = 〈Aγ̇, γ̇〉N,
∇̃γ̇N = −Aγ̇,

where N is a unit normal vector field of Gp(r) in M .
By hypothesis the curve γ is a curve of order 2 in
the ambient space M . As ‖∇̃γ̇γ̇‖ =

√
〈Aγ̇, γ̇〉 > 0,

we find γ is a Frenet curve of proper order 2 in M

by Lemma 1. Therefore we get Aγ̇(s) is proportional
to γ̇(s) for each s, in particular, the vector v at the
point x is the principal curvature vector of Gp(r) in
M .

We now show that Gp(r) is totally umbilic in
the ambient space M . Choose an arbitrary point x ∈
Gp(r) and take an orthonormal basis {v1, . . . , vn−1}
of the tangent space TxGp(r) as principal curvature
vectors of Gp(r) in M , that is, they satisfy Avi =
λivi for 1 � i � n − 1. For distinct i, j (1 � i, j �
n − 1) the above discussion guarantees that one of
the following conditions holds:

i) 〈A(vi + vj), vi + vj〉 = 0,
ii) A(vi + vj) = λij(vi + vj) for some λij ∈ R.

In the second case, we take the inner products of both
sides of the equality and vectors vi, vj. We then have
λi = λij = λj . In the first case, the equality leads
us to λj = −λi. In order to see λi = λj we consider
the vector vi + 2vj . The previous discussion also
guarantees that either 〈A(vi + 2vj), vi + 2vj〉 = 0 or
A(vi+2vj) = λ(vi+2vj) holds for some λ ∈ R. In the
former case, the equality leads us to λi +4λj = 0. In
the latter case, by taking the inner products of both
side of the equality and vectors vi, vj, we have λi =
λ = λj . Hence we find in the first case that λi = λj =
0. Thus we see that λi = λj for each distinct pair i, j,
and that x is an umbilic point. Since x is arbitrary,
Gp(r) is totally umbilic in M . We therefore get our
conclusion by virtue of Theorem 3.3 in [CV].

Next, we characterize a space formMn(c) of cur-
vature c by observing the extrinsic shape of circles of
positive curvature on geodesic spheres of sufficiently
small radius in Mn(c).

Theorem 2. Let M be a complete Rieman-
nian manifold of dimension greater than 2. Then
the following conditions are equivalent :
(1) M is a space form.
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(2) For each point p ∈ M there is a positive num-
ber εp such that for every r with 0 < r < εp
there exists some k = k(p, r) ≥ 0 satisfying the
following property : Every circle of curvature k
on a geodesic sphere Gp(r) in M is a circle of
positive curvature in M .

(3) For each point p ∈M there is a positive number
εp such that for every r with 0 < r < εp there
exists some k = k(p, r) ≥ 0 satisfying the fol-
lowing property : Every circle of curvature k on
a geodesic sphere Gp(r) in M is a plane curve
in M .

(4) For each point p ∈M there is a positive number
εp such that for every r with 0 < r < εp there
exists some k = k(p, r) ≥ 0 satisfying the fol-
lowing property : Every circle of curvature k on
a geodesic sphere Gp(r) in M is a Frenet curve
of order 2 in the wider sense in M .

(5) For each point p ∈M there is a positive number
εp such that for every r with 0 < r < εp there
exists some k = k(p, r) ≥ 0 satisfying the fol-
lowing property : Every circle of curvature k on
a geodesic sphere Gp(r) in M is a curve of order
2 in M .
Proof. It is sufficient to show that (5) implies

(1). We show Gp(r) is totally umbilic in the ambient
space M . When k = 0, the proof of Theorem 1
guarantees this, so we suppose k > 0. We choose an
arbitrary point x ∈ Gp(r). For a pair of orthonormal
tangent vectors u, v ∈ TxGp(r) we take a circle γ of
positive curvature k on Gp(r) with initial condition
that γ(0) = x, γ̇(0) = u,∇γ̇γ̇(0) = kv, which satisfies
the equations ∇γ̇γ̇ = kY and ∇γ̇Y = −kγ̇. By the
Gauss formula we have

∇̃γ̇ γ̇ = ∇γ̇ γ̇ + 〈Aγ̇, γ̇〉N = kY + 〈Aγ̇, γ̇〉N,

which shows that ‖∇̃γ̇γ̇‖ > 0. Hence, by hypothetis,
Lemma 1 tells us that the curve γ is a Frenet curve
of proper order 2 in the ambient space M , so that it
satisfies the following differential equations:{

∇̃γ̇ γ̇ =
√
k2 + 〈Aγ̇, γ̇〉2 Ỹ

∇̃γ̇Ỹ = −
√
k2 + 〈Aγ̇, γ̇〉2 γ̇,

where Ỹ =
(
kY + 〈Aγ̇, γ̇〉N

)/√
k2 + 〈Aγ̇, γ̇〉2. By

the second equality we obtain

∇̃γ̇

(√
k2 + 〈Aγ̇, γ̇〉2 Ỹ

)
= −
(
k2 + 〈Aγ̇, γ̇〉2

)
γ̇ +

〈Aγ̇, γ̇〉〈Aγ̇, γ̇〉′√
k2 + 〈Aγ̇, γ̇〉2

Ỹ .

On the other hand, by use of the formulae of Gauss
and Weingarten we find

∇̃γ̇

(√
k2 + 〈Aγ̇, γ̇〉2 Ỹ

)
= ∇̃γ̇

(
kY + 〈Aγ̇, γ̇〉N

)
= −k2γ̇ + k〈Aγ̇, Y 〉N

+ 〈Aγ̇, γ̇〉′N − 〈Aγ̇, γ̇〉Aγ̇.

Comparing these two equalities we can see that

〈Aγ̇, γ̇〉2γ̇ − 〈Aγ̇, γ̇〉Aγ̇ − k〈Aγ̇, γ̇〉〈Aγ̇, γ̇〉′
k2 + 〈Aγ̇, γ̇〉2 Y

=
〈Aγ̇, γ̇〉2〈Aγ̇, γ̇〉′
k2 + 〈Aγ̇, γ̇〉2 N − k〈Aγ̇, Y 〉N − 〈Aγ̇, γ̇〉′N.

Taking the inner products of both sides of this equal-
ity and the vector fields Y and N , we obtain

(3.1) 〈Aγ̇, γ̇〉〈Aγ̇, Y 〉 +
k〈Aγ̇, γ̇〉〈Aγ̇, γ̇〉′
k2 + 〈Aγ̇, γ̇〉2 = 0,

and

(3.2)
〈Aγ̇, γ̇〉2〈Aγ̇, γ̇〉′
k2 + 〈Aγ̇, γ̇〉2 − k〈Aγ̇, Y 〉 − 〈Aγ̇, γ̇〉′ = 0.

Since we have

〈Aγ̇, γ̇〉′ = 〈(∇γ̇A)γ̇, γ̇〉 + 2k〈Aγ̇, Y 〉,

because A is symmetric, it follows from (3.1) and
(3.2) that(

3k2 + 〈Aγ̇, γ̇〉2
)
〈Aγ̇, Y 〉 + k〈(∇γ̇Aγ̇, γ̇〉 = 0.

Evaluating this equation at s = 0, we find

(3.3)
(
3k2 + 〈Au, u〉2

)
〈Au, v〉 + k〈(∇uA)u, u〉 = 0.

As the pair u,−v is also orthonormal, we have

(3.4) −
(
3k2+〈Au, u〉2

)
〈Au, v〉+k〈(∇uA)u, u〉 = 0.

We then see from (3.3) and (3.4) that 〈Au, v〉 = 0
for each orthonormal pair of tangent vectors u, v ∈
TxGp(r) at an arbitrary point x ∈ Gp(r), so that
our geodesic sphere Gp(r) is totally umbilic in the
ambient space M . Therefore we get the desirable
result.
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