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0. Introduction. Let G be a unitary group
of degree n defined over a non-archimedean local
field F of characteristic different from 2. Then G is
embedded into the symplectic group Spn(⊂ GL2n).
By restricting a metaplectic representation of Spn
to G, we obtain a projective representation M of
G. It is well-known that M splits; that is, with a
suitable normalizing factor γ(g), the mapping g 7→
γ(g) ·M(g) defines a smooth representation of G (cf.
[Ka], [MVW]). In the study of metaplectic represen-
tations, it is often necessary to know the explicit form
of γ(g). Kudla [Ku], using results due to Rao [R] and
Perrin [P], gave an explicit splitting in the case where
G splits over F and M is realized on the Schrödinger
model. He also treated the non-split case by reducing
it to the split case.

The object of this paper is to give an explicit
splitting of M available in both split and non-split
cases in a uniform way. Our splitting relies on a real-
ization of M given in [MVW], which is naturally con-
structed from an irreducible smooth representation ρ
of the Heisenberg group and essentially independent
of the choice of a model of ρ. Thus our splitting is, in
a sense, model-independent. We note that the result
has been proved in [MS] in the case n = 1.

The paper is organized as follows. In §1, after
giving some notations and recalling a realization of
metaplectic representations after [MVW], we state
the main result of the paper (Theorem 1.8). In §2,
we prove the theorem by calculating the cocycles of
M explicitly.

1. Main result. 1.1. Let F be a non-
archimedean local field of characteristic different
from 2 andK a semisimple commutative algebra over
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F with dimF K = 2. Then K is either a quadratic
extension of F or isomorphic to F ⊕F . In the latter
case, we fix an isomorphism K ' F⊕F to identify K
with F ⊕F . Denote by ω the quadratic character of
F× corresponding to K/F by local class field theory.
Let OF be the integer ring of F and

OK =
{

the integer ring of K · · · K is a field
OF ⊕OF · · · K = F ⊕ F.

For z ∈ K, we put TrK/F (z) = z + zσ, NK/F (z) =
zzσ and |z|K = |NK/F (z)|F , where σ denotes the
nontrivial automorphism of K/F and | · |F the nor-
malized valuation of F . For A ∈ Mmn(K), we put
A∗ = tAσ. By a lattice of a finite dimensional vector
space W over K, we always mean an OF -lattice of
W .

1.2. Let W = Kn be the vector space of n-
column vectors in K. We fix a Q ∈ GLn(K) with
Q∗ = −Q and define a nondegenerate F -valued alter-
nating form 〈 , 〉 on W by 〈w,w′〉 = TrK/F (w∗Qw′)
(w,w′ ∈ W ). Let H be the Heisenberg group as-
sociated with the symplectic space (W, 〈 , 〉). By
definition, the underlying set of H is W ×F and the
multiplication is given by (w, x)(w′, x′) = (w+w′, x+
x′ + 〈w,w′〉/2). Let G = U(Q) = {g ∈ GLn(K) |
g∗Qg = Q} be the unitary group of Q. Then G acts
on H by g · (w, x) = (gw, x) (g ∈ G, (w, x) ∈ H).

1.3. From now on, we fix a nontrivial additive
character ψ of F . Let (ρ, V ) be a smooth irreducible
representation of H such that ρ((0, x)) = ψ(x) · IdV
(x ∈ F ). By the Stone–von Neumann theorem, for
each g ∈ G, there exists an automorphism M(g) of
V satisfying

M(g)ρ(h)M(g)−1 = ρ(g · h) (h ∈ H)(1.1)

and g 7→ M(g) defines a projective representation
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of G on V (a metaplectic representation of G). To
simplify the notation, we write ρ(w, x) for ρ((w, x)).

1.4. We next recall a realization of M(g) at-
tached to (ρ, V ) given in [MVW]. Let g ∈ G (g 6= 1)
and put Wg = W/Ker(g − 1). Let dgw be the Haar
measure on Wg self-dual with respect to the pairing
(w,w′) 7→ ψ(〈w, (g − 1)w′〉). For each v ∈ V , there
exist a lattice Lv of Wg and v′ ∈ V satisfying the fol-
lowing condition; for any lattice L of Wg containing
Lv, we have

v′ =
∫
L

ψ
(1

2
〈w, gw〉

)
ρ((1− g)w, 0)vdgw.

We put M(g)v = v′. If g = 1, we set M(g) = IdV .
Then M(g) : G→ End(V ) satisfies (1.1) and M(g) ◦
M(g−1) = IdV holds for any g ∈ G (see [MVW, Ch.
2, II.2–4]).

1.5. To recall a definition of Weil constants
(cf. [W]), let dKw be the Haar measure on K

self-dual with respect to the pairing (w,w′) 7→
ψ(TrK/F (wσw′)), and S(K) the space of locally con-
stant and compactly supported functions on K. De-
note by f̂ the Fourier transform of f ∈ S(K):

f̂(w) =
∫
K

f(w′)ψ(TrK/F (wσw′))dKw′.

Then there exists a nonzero complex number λK(ψ)
such that the following equality holds for any f ∈
S(K) and a ∈ F×:∫

K

f(w)ψ(awwσ)dKw(1.2)

= λK(ψ)ω(a)|a|−1
F

∫
K

f̂(w)ψ(−a−1wwσ)dKw.

It is known that λK(ψ)2 = ω(−1).
1.6. Let R ∈Mn(K)− {0} and put Ker(R) =

{w ∈ W | Rw = 0} and n(R) = dimKW/Ker(R).
Suppose that Ker(R) = Ker(R∗). Then there ex-

ists an A ∈ GLn(K) such that A∗RA =
(
R0 0
0 0

)
with R0 ∈ GLn(R)(K). We set ∆(R) = det(R0) ∈
K×/NK/F (K×), which is independent of the choice
of A. Note that ∆(R) = det

(
(w∗iRwj)1≤i,j≤n(R)

)
,

where {w1, . . . , wn(R)} is a K-basis of W/Ker(R).
We put n(R) = 0 and ∆(R) = 1 if R is the zero
matrix.

1.7. Let g ∈ G and put Rg = Q(g − 1). Then
we have Ker(Rg) = Ker(R∗g) = Ker(g − 1). Set νg =
n(Rg) = dimKW/Ker(g − 1) and ξg = ∆(Rg). Let
X be the set of unitary characters χ of K× with

χ|F× = ω. For χ ∈ X , we put

γχ(g) = λK(ψ)−νgχ(ξg).(1.3)

Since χ is trivial onNK/F (K×), γχ(g) is well-defined.
It is easily verified that γχ(g)γχ(g−1) = 1. Set
Mχ(g) = γχ(g)M(g). We are now able to state the
main result of the paper:

1.8. Theorem. For χ ∈ X , the mapping g 7→
Mχ(g) defines a smooth representation of G on V .

Remark 1. Theorem 1.8, with a suitable
modification, also holds for symplectic groups and
quaternion unitary groups. (In the symplectic case,
we obtain a projective representation whose cocyles
are valued in {±1}.) Theorem 1.8 also holds in the
archimedean case.

Remark 2. A straightforward calculation
shows that our splitting coincides with the one given
in [Ku] in the case where G splits over F and (ρ, V )
is the Schrödinger model.

2. Proof of the main result. 2.1. Let
S be a Hermitian matrix of degree n. Note that
∆(S) ∈ F×/NK/F (K×). Let dSw be the Haar mea-
sure on WS = W/Ker(S) self-dual with respect to
the pairing (w,w′) 7→ ψ(TrK/F (w∗Sw′)). The fol-
lowing well-known fact is an immediate consequence
of (1.2).

2.2. Lemma. There exists a lattice LS of WS

such that, for any lattice L of WS containing LS, we
have ∫

L

ψ(w∗Sw)dSw = λK(ψ)n(S)ω(∆(S)).

2.3. For g, g′ ∈ G, let c(g, g′) ∈ C× be the
cocycle of M given by

M(g)M(g′) = c(g, g′) ·M(gg′).

By an argument similar to [P, §1.4], we see that the
proof of Theorem 1.8 is reduced to that of the fol-
lowing fact.

2.4. Lemma. Let g, g′ ∈ G and suppose that

g 6= 1,det(g′ − 1) 6= 0,det(gg′ − 1) 6= 0.(2.1)

Then, for χ ∈ X , we have

c(g, g′) =
γχ(gg′)

γχ(g)γχ(g′)
.

2.5. To show Lemma 2.4, we henceforth fix
g, g′ ∈ G satisfying (2.1) and put S = Q(g′ −
1)(gg′ − 1)−1(g − 1). Since S = 2−1(QB − B∗Q)
with B = g + (g−1 − 1)(gg′ − 1)−1(g − 1), we have
S∗ = S. Note that Ker(S) = Ker(g − 1).
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2.6. Lemma. We have

c(g, g′) = λK(ψ)νg · ω(∆(S)).

Proof. Let v ∈ V − {0}. Taking sufficiently
large lattices L and L′ of Wg and W respectively, we
have

M(g)M(g′)v

=
∫
L

dgw

∫
L′
dg′w

′ψ
(1

2
〈w, gw〉+ 1

2
〈w′, g′w′〉

+
1
2
〈(1− g)w, (1− g′)w′〉

)
ρ((1− g)w + (1− g′)w′, 0)v.

We may (and do) assume that π(g′L′) ⊂ L, where
π : W →Wg denotes the natural projection. Chang-
ing the variable w into w + g′w′, we obtain

M(g)M(g′)v

=
∫
L′
ψ

(
−1

2
〈w′, (1− gg′)w′〉

)
f(w′)dg′w′,

where

f(w′) =
∫
L

ψ
(1

2
〈w, (g − 1)w〉

+
1
2
〈w, (1− g−1)(1 + gg′)w′〉

)
ρ((1− g)w + (1− gg′)w′, 0)vdgw.

A standard argument shows that the mapping
f : W → V is compactly supported. We thus have

M(g)M(g′)v =
∫
W

dg′w
′
∫
L

dgw

ψ
(
− 1

2
〈w′, (1− gg′)w′〉+ 1

2
〈w, (g − 1)w〉

+
1
2
〈(1− g)w, (1 + gg′)w′〉

)
ρ((1− g)w + (1− gg′)w′, 0)v.

Changing the variable w′ into w′−(1−gg′)−1(1−g)w,
we obtain

M(g)M(g′)v

=
∫
L

ψ
(1

2
〈w, (g′ − 1)(gg′ − 1)−1(g − 1)w〉

)
dgw

×
∫
L′
ψ

(1
2
〈w′, gg′w′〉

)
ρ((1− gg′)w′, 0)vdg′w′

=
∫
L

ψ(w∗Sw)dgw ·
dg′w

′

dgg′w′
M(gg′)v.

This implies

c(g, g′) =
dg′w

′

dgg′w′
· dgw
dSw

∫
L

ψ(w∗Sw)dSw

= λK(ψ)νg · ω(∆(S))

as claimed.
2.7. For a, b ∈ K×, we write a ∼ b if ab−1 ∈

NK/F (K×). To prove Lemma 2.4, it now remains to
show the following:

2.8. Lemma.

∆(S) ∼ ξgξg′

ξgg′
.

Proof. Set Y = Q(g′ − 1)(gg′ − 1)−1Q−1 and
X = Q(g − 1), and take an element A of GLn(K)
such that X ′ = A∗XA = diag(x, 0n−νg

) with x ∈
GLνg

(K). Note that S = Y X and ξg = detx. Let

Y ′ = A∗Y (A∗)−1 =
(
y1 y2
y3 y4

)
, S′ = A∗SA = Y ′X ′

with y1 of size νg and y4 of size n− νg. Since

S′ =
(
y1x 0
y3x 0

)
and S′∗ = S′, we have y3 = 0. We next show that y4
is the identity matrix. Let u be any element ofKn−νg

(a row vector) and 0 = (0, . . . , 0) ∈ Kνg . Then
we have [0u]Y ′ = [0uy4]. Observe that [0u]A∗Q =
[0u]A∗Qg, since [0u]X ′ is the zero vector. It follows
that

[0u]Y ′ = [0u]A∗Q(g′ − 1)(gg′ − 1)−1Q−1(A∗)−1

= [0u]A∗Q(gg′ − g)(gg′ − 1)−1Q−1(A∗)−1

= [0u]− [0u]A∗Q(g−1)(gg′−1)−1Q−1(A∗)−1

= [0u],

which implies y4 = 1n−νg as claimed. We thus have
detY = detY ′ = det y1 and ∆(S) ∼ ∆(S′) = det y1 ·
detx = detY · ξg ∼ det(g′ − 1) det(gg′ − 1)−1 · ξg.
The proof of the lemma is now complete since ξg′ =
detQ · det(g′− 1) and ξgg′ = detQ · det(gg′− 1).
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