On metaplectic representations of unitary groups: I. Splitting

By Atsushi MURASE

Department of Mathematics, Faculty of Science, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555 (Communicated by Shigefumi MORI, M. J. A., April 12, 2001)

Abstract: Model independent splittings of metaplectic representations of unitary groups are given.

Key words: Metaplectic representation; Weil representation; unitary group; Heisenberg group.

0. Introduction. Let *G* be a unitary group of degree n defined over a non-archimedean local field F of characteristic different from 2. Then G is embedded into the symplectic group $Sp_n(\subset GL_{2n})$. By restricting a metaplectic representation of Sp_n to G, we obtain a projective representation M of G. It is well-known that M splits; that is, with a suitable normalizing factor $\gamma(g)$, the mapping $g \mapsto$ $\gamma(q) \cdot M(q)$ defines a smooth representation of G (cf. [Ka], [MVW]). In the study of metaplectic representations, it is often necessary to know the explicit form of $\gamma(q)$. Kudla [Ku], using results due to Rao [R] and Perrin [P], gave an explicit splitting in the case where G splits over F and M is realized on the Schrödinger model. He also treated the non-split case by reducing it to the split case.

The object of this paper is to give an explicit splitting of M available in both split and non-split cases in a uniform way. Our splitting relies on a realization of M given in [MVW], which is naturally constructed from an irreducible smooth representation ρ of the Heisenberg group and essentially independent of the choice of a model of ρ . Thus our splitting is, in a sense, *model-independent*. We note that the result has been proved in [MS] in the case n = 1.

The paper is organized as follows. In §1, after giving some notations and recalling a realization of metaplectic representations after [MVW], we state the main result of the paper (Theorem 1.8). In §2, we prove the theorem by calculating the cocycles of M explicitly.

1. Main result. 1.1. Let F be a nonarchimedean local field of characteristic different from 2 and K a semisimple commutative algebra over F with dim_F K = 2. Then K is either a quadratic extension of F or isomorphic to $F \oplus F$. In the latter case, we fix an isomorphism $K \simeq F \oplus F$ to identify Kwith $F \oplus F$. Denote by ω the quadratic character of F^{\times} corresponding to K/F by local class field theory. Let \mathcal{O}_F be the integer ring of F and

$$\mathcal{O}_K = \begin{cases} \text{the integer ring of } K \cdots K \text{ is a field} \\ \mathcal{O}_F \oplus \mathcal{O}_F & \cdots & K = F \oplus F. \end{cases}$$

For $z \in K$, we put $\operatorname{Tr}_{K/F}(z) = z + z^{\sigma}$, $N_{K/F}(z) = zz^{\sigma}$ and $|z|_{K} = |N_{K/F}(z)|_{F}$, where σ denotes the nontrivial automorphism of K/F and $|\cdot|_{F}$ the normalized valuation of F. For $A \in M_{mn}(K)$, we put $A^{*} = {}^{t}A^{\sigma}$. By a *lattice* of a finite dimensional vector space W over K, we always mean an \mathcal{O}_{F} -lattice of W.

1.2. Let $W = K^n$ be the vector space of *n*column vectors in *K*. We fix a $Q \in GL_n(K)$ with $Q^* = -Q$ and define a nondegenerate *F*-valued alternating form \langle , \rangle on *W* by $\langle w, w' \rangle = \operatorname{Tr}_{K/F}(w^*Qw')$ $(w, w' \in W)$. Let *H* be the Heisenberg group associated with the symplectic space (W, \langle , \rangle) . By definition, the underlying set of *H* is $W \times F$ and the multiplication is given by (w, x)(w', x') = (w+w', x+ $x' + \langle w, w' \rangle/2)$. Let $G = U(Q) = \{g \in GL_n(K) \mid g^*Qg = Q\}$ be the unitary group of *Q*. Then *G* acts on *H* by $g \cdot (w, x) = (gw, x)$ $(g \in G, (w, x) \in H)$.

1.3. From now on, we fix a nontrivial additive character ψ of F. Let (ρ, V) be a smooth irreducible representation of H such that $\rho((0, x)) = \psi(x) \cdot \operatorname{Id}_V$ $(x \in F)$. By the Stone–von Neumann theorem, for each $g \in G$, there exists an automorphism M(g) of V satisfying

(1.1)
$$M(g)\rho(h)M(g)^{-1} = \rho(g \cdot h)$$
 $(h \in H)$

and $g \mapsto M(g)$ defines a projective representation

¹⁹⁹¹ Mathematics Subject Classification. 11F27, 22E50.

of G on V (a metaplectic representation of G). To simplify the notation, we write $\rho(w, x)$ for $\rho((w, x))$.

1.4. We next recall a realization of M(g) attached to (ρ, V) given in [MVW]. Let $g \in G$ $(g \neq 1)$ and put $W_g = W/\operatorname{Ker}(g-1)$. Let $d_g w$ be the Haar measure on W_g self-dual with respect to the pairing $(w, w') \mapsto \psi(\langle w, (g-1)w' \rangle)$. For each $v \in V$, there exist a lattice L_v of W_g and $v' \in V$ satisfying the following condition; for any lattice L of W_g containing L_v , we have

$$v' = \int_L \psi\Big(\frac{1}{2} \langle w, gw \rangle\Big) \rho((1-g)w, 0) v d_g w.$$

We put M(g)v = v'. If g = 1, we set $M(g) = \mathrm{Id}_V$. Then $M(g): G \to \mathrm{End}(V)$ satisfies (1.1) and $M(g) \circ M(g^{-1}) = \mathrm{Id}_V$ holds for any $g \in G$ (see [MVW, Ch. 2, II.2-4]).

1.5. To recall a definition of Weil constants (cf. [W]), let $d_K w$ be the Haar measure on K self-dual with respect to the pairing $(w, w') \mapsto \psi(\operatorname{Tr}_{K/F}(w^{\sigma}w'))$, and $\mathcal{S}(K)$ the space of locally constant and compactly supported functions on K. Denote by \hat{f} the Fourier transform of $f \in \mathcal{S}(K)$:

$$\widehat{f}(w) = \int_{K} f(w')\psi(\operatorname{Tr}_{K/F}(w^{\sigma}w'))d_{K}w'.$$

Then there exists a nonzero complex number $\lambda_K(\psi)$ such that the following equality holds for any $f \in \mathcal{S}(K)$ and $a \in F^{\times}$:

(1.2)
$$\int_{K} f(w)\psi(aww^{\sigma})d_{K}w$$
$$= \lambda_{K}(\psi)\omega(a)|a|_{F}^{-1}\int_{K}\widehat{f}(w)\psi(-a^{-1}ww^{\sigma})d_{K}w.$$

It is known that $\lambda_K(\psi)^2 = \omega(-1)$.

1.6. Let $R \in M_n(K) - \{0\}$ and put $\operatorname{Ker}(R) = \{w \in W \mid Rw = 0\}$ and $n(R) = \dim_K W/\operatorname{Ker}(R)$. Suppose that $\operatorname{Ker}(R) = \operatorname{Ker}(R^*)$. Then there exists an $A \in GL_n(K)$ such that $A^*RA = \begin{pmatrix} R_0 & 0 \\ 0 & 0 \end{pmatrix}$ with $R_0 \in GL_{n(R)}(K)$. We set $\Delta(R) = \det(R_0) \in K^{\times}/N_{K/F}(K^{\times})$, which is independent of the choice of A. Note that $\Delta(R) = \det\left((w_i^*Rw_j)_{1\leq i,j\leq n(R)}\right)$, where $\{w_1,\ldots,w_{n(R)}\}$ is a K-basis of $W/\operatorname{Ker}(R)$. We put n(R) = 0 and $\Delta(R) = 1$ if R is the zero matrix.

1.7. Let $g \in G$ and put $R_g = Q(g-1)$. Then we have $\operatorname{Ker}(R_g) = \operatorname{Ker}(R_g^*) = \operatorname{Ker}(g-1)$. Set $\nu_g = n(R_g) = \dim_K W / \operatorname{Ker}(g-1)$ and $\xi_g = \Delta(R_g)$. Let \mathcal{X} be the set of unitary characters χ of K^{\times} with

$$\chi|_{F^{\times}} = \omega$$
. For $\chi \in \mathcal{X}$, we put

(1.3)
$$\gamma_{\chi}(g) = \lambda_K(\psi)^{-\nu_g} \chi(\xi_g)$$

Since χ is trivial on $N_{K/F}(K^{\times})$, $\gamma_{\chi}(g)$ is well-defined. It is easily verified that $\gamma_{\chi}(g)\gamma_{\chi}(g^{-1}) = 1$. Set $\mathcal{M}_{\chi}(g) = \gamma_{\chi}(g)\mathcal{M}(g)$. We are now able to state the main result of the paper:

1.8. Theorem. For $\chi \in \mathcal{X}$, the mapping $g \mapsto \mathcal{M}_{\chi}(g)$ defines a smooth representation of G on V.

Remark 1. Theorem 1.8, with a suitable modification, also holds for symplectic groups and quaternion unitary groups. (In the symplectic case, we obtain a projective representation whose cocyles are valued in $\{\pm 1\}$.) Theorem 1.8 also holds in the archimedean case.

Remark 2. A straightforward calculation shows that our splitting coincides with the one given in [Ku] in the case where G splits over F and (ρ, V) is the Schrödinger model.

2. Proof of the main result. 2.1. Let S be a Hermitian matrix of degree n. Note that $\Delta(S) \in F^{\times}/N_{K/F}(K^{\times})$. Let $d_S w$ be the Haar measure on $W_S = W/\operatorname{Ker}(S)$ self-dual with respect to the pairing $(w, w') \mapsto \psi(\operatorname{Tr}_{K/F}(w^*Sw'))$. The following well-known fact is an immediate consequence of (1.2).

2.2. Lemma. There exists a lattice L_S of W_S such that, for any lattice L of W_S containing L_S , we have

$$\int_{L} \psi(w^* S w) d_S w = \lambda_K(\psi)^{n(S)} \omega(\Delta(S)).$$

2.3. For $g, g' \in G$, let $c(g, g') \in \mathbf{C}^{\times}$ be the cocycle of M given by

$$M(g)M(g') = c(g,g') \cdot M(gg').$$

By an argument similar to [P, §1.4], we see that the proof of Theorem 1.8 is reduced to that of the following fact.

2.4. Lemma. Let $g, g' \in G$ and suppose that

(2.1)
$$g \neq 1, \det(g'-1) \neq 0, \det(gg'-1) \neq 0.$$

Then, for $\chi \in \mathcal{X}$, we have

$$c(g,g') = \frac{\gamma_{\chi}(gg')}{\gamma_{\chi}(g)\gamma_{\chi}(g')}$$

2.5. To show Lemma 2.4, we henceforth fix $g, g' \in G$ satisfying (2.1) and put $S = Q(g' - 1)(gg' - 1)^{-1}(g - 1)$. Since $S = 2^{-1}(QB - B^*Q)$ with $B = g + (g^{-1} - 1)(gg' - 1)^{-1}(g - 1)$, we have $S^* = S$. Note that Ker(S) = Ker(g - 1).

2.6. Lemma. We have

$$c(g,g') = \lambda_K(\psi)^{\nu_g} \cdot \omega(\Delta(S)).$$

Proof. Let $v \in V - \{0\}$. Taking sufficiently large lattices L and L' of W_g and W respectively, we have

$$\begin{split} M(g)M(g')v \\ &= \int_{L} d_{g}w \int_{L'} d_{g'}w'\psi\Big(\frac{1}{2}\langle w,gw\rangle + \frac{1}{2}\langle w',g'w'\rangle \\ &+ \frac{1}{2}\langle (1-g)w,(1-g')w'\rangle\Big) \\ \rho((1-g)w+(1-g')w',0)v. \end{split}$$

We may (and do) assume that $\pi(g'L') \subset L$, where $\pi: W \to W_g$ denotes the natural projection. Changing the variable w into w + g'w', we obtain

$$M(g)M(g')v = \int_{L'} \psi\left(-\frac{1}{2}\langle w', (1-gg')w'\rangle\right) f(w')d_{g'}w',$$

where

$$f(w') = \int_{L} \psi \left(\frac{1}{2} \langle w, (g-1)w \rangle + \frac{1}{2} \langle w, (1-g^{-1})(1+gg')w' \rangle \right)$$
$$\rho((1-g)w + (1-gg')w', 0)vd_{g}w.$$

A standard argument shows that the mapping $f: W \to V$ is compactly supported. We thus have

$$\begin{split} M(g)M(g')v &= \int_W d_{g'}w' \int_L d_gw \\ \psi\Big(-\frac{1}{2}\langle w', (1-gg')w'\rangle + \frac{1}{2}\langle w, (g-1)w\rangle \\ +\frac{1}{2}\langle (1-g)w, (1+gg')w'\rangle\Big) \\ \rho((1-g)w + (1-gg')w', 0)v. \end{split}$$

Changing the variable w' into $w' - (1-gg')^{-1}(1-g)w$, we obtain

$$\begin{split} M(g)M(g')v \\ &= \int_{L} \psi\Big(\frac{1}{2} \langle w, (g'-1)(gg'-1)^{-1}(g-1)w \rangle\Big) d_{g}w \\ &\times \int_{L'} \psi\Big(\frac{1}{2} \langle w', gg'w' \rangle\Big) \rho((1-gg')w', 0)v d_{g'}w' \\ &= \int_{L} \psi(w^{*}Sw) d_{g}w \cdot \frac{d_{g'}w'}{d_{gg'}w'} M(gg')v. \end{split}$$

This implies

$$c(g,g') = \frac{d_{g'}w'}{d_{gg'}w'} \cdot \frac{d_gw}{d_Sw} \int_L \psi(w^*Sw)d_Sw$$
$$= \lambda_K(\psi)^{\nu_g} \cdot \omega(\Delta(S))$$

as claimed.

2.7. For $a, b \in K^{\times}$, we write $a \sim b$ if $ab^{-1} \in N_{K/F}(K^{\times})$. To prove Lemma 2.4, it now remains to show the following:

2.8. Lemma.

$$\Delta(S) \sim \frac{\xi_g \xi_{g'}}{\xi_{gg'}}.$$

Proof. Set $Y = Q(g'-1)(gg'-1)^{-1}Q^{-1}$ and X = Q(g-1), and take an element A of $GL_n(K)$ such that $X' = A^*XA = \operatorname{diag}(x, 0_{n-\nu_g})$ with $x \in GL_{\nu_g}(K)$. Note that S = YX and $\xi_g = \det x$. Let

$$Y' = A^* Y (A^*)^{-1} = \begin{pmatrix} y_1 & y_2 \\ y_3 & y_4 \end{pmatrix}, S' = A^* S A = Y' X'$$

with y_1 of size ν_g and y_4 of size $n - \nu_g$. Since

$$S' = \begin{pmatrix} y_1 x & 0 \\ y_3 x & 0 \end{pmatrix}$$

and $S'^* = S'$, we have $y_3 = 0$. We next show that y_4 is the identity matrix. Let u be any element of $K^{n-\nu_g}$ (a row vector) and $\mathbf{0} = (0, \ldots, 0) \in K^{\nu_g}$. Then we have $[\mathbf{0}u]Y' = [\mathbf{0} uy_4]$. Observe that $[\mathbf{0}u]A^*Q = [\mathbf{0}u]A^*Qg$, since $[\mathbf{0}u]X'$ is the zero vector. It follows that

$$\begin{split} [\mathbf{0}u]Y' &= [\mathbf{0}u]A^*Q(g'-1)(gg'-1)^{-1}Q^{-1}(A^*)^{-1} \\ &= [\mathbf{0}u]A^*Q(gg'-g)(gg'-1)^{-1}Q^{-1}(A^*)^{-1} \\ &= [\mathbf{0}u] - [\mathbf{0}u]A^*Q(g-1)(gg'-1)^{-1}Q^{-1}(A^*)^{-1} \\ &= [\mathbf{0}u], \end{split}$$

which implies $y_4 = 1_{n-\nu_g}$ as claimed. We thus have det $Y = \det Y' = \det y_1$ and $\Delta(S) \sim \Delta(S') = \det y_1 \cdot$ det $x = \det Y \cdot \xi_g \sim \det(g'-1) \det(gg'-1)^{-1} \cdot \xi_g$. The proof of the lemma is now complete since $\xi_{g'} =$ det $Q \cdot \det(g'-1)$ and $\xi_{gg'} = \det Q \cdot \det(gg'-1)$.

References

- [Ka] Kazhdan, D.: Some applications of Weil representation. J. d'analyse Mathématique, 32, 235–248 (1977).
- [Ku] Kudla, S. S.: Splitting metaplectic covers of dual reductive pairs. Israel J. Math., 87, 361–401 (1994).
- [MVW] Mœglin, C., Vignéras, M.-F., and Waldspurger, J.-L.: Correspondences de Howe sur un corps

61

No. 4]

p-adique. Lecture Notes in Math., no. 1291, Springer, New York (1987).

- [MS] Murase, A., and Sugano, T.: Local theory of primitive theta functions. Compositio Math., 123, 273–302 (2000).
- [P] Perrin, P.: Représentations de Schrödinger, indice de Maslov et groupe métaplectique. Non Commutative Harmonic Analysis and Lie Groups. Lecture Notes in Math., no. 880, Springer, New York, pp. 370–407 (1981).
- [R] Rao, R. R.: On some explicit formulas in the theory of Weil representation. Pacific J. Math., 157, 335–371 (1993).
- [W] Weil, A.: Sur certains groupes d'opérateurs unitaires. Acta Math., 111, 143–211 (1964).