On metaplectic representations of unitary groups: I. Splitting

By Atsushi Murase
Department of Mathematics, Faculty of Science, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555
(Communicated by Shigefumi Mori, M. J. A., April 12, 2001)

Abstract

Model independent splittings of metaplectic representations of unitary groups are given.

Key words: Metaplectic representation; Weil representation; unitary group; Heisenberg group.

0. Introduction. Let G be a unitary group of degree n defined over a non-archimedean local field F of characteristic different from 2. Then G is embedded into the symplectic group $S p_{n}\left(\subset G L_{2 n}\right)$. By restricting a metaplectic representation of $S p_{n}$ to G, we obtain a projective representation M of G. It is well-known that M splits; that is, with a suitable normalizing factor $\gamma(g)$, the mapping $g \mapsto$ $\gamma(g) \cdot M(g)$ defines a smooth representation of G (cf. [Ka], [MVW]). In the study of metaplectic representations, it is often necessary to know the explicit form of $\gamma(g)$. Kudla $[\mathrm{Ku}]$, using results due to Rao $[\mathrm{R}]$ and Perrin [P], gave an explicit splitting in the case where G splits over F and M is realized on the Schrödinger model. He also treated the non-split case by reducing it to the split case.

The object of this paper is to give an explicit splitting of M available in both split and non-split cases in a uniform way. Our splitting relies on a realization of M given in [MVW], which is naturally constructed from an irreducible smooth representation ρ of the Heisenberg group and essentially independent of the choice of a model of ρ. Thus our splitting is, in a sense, model-independent. We note that the result has been proved in $[\mathrm{MS}]$ in the case $n=1$.

The paper is organized as follows. In $\S 1$, after giving some notations and recalling a realization of metaplectic representations after [MVW], we state the main result of the paper (Theorem 1.8). In §2, we prove the theorem by calculating the cocycles of M explicitly.

1. Main result. 1.1. Let F be a nonarchimedean local field of characteristic different from 2 and K a semisimple commutative algebra over

[^0]F with $\operatorname{dim}_{F} K=2$. Then K is either a quadratic extension of F or isomorphic to $F \oplus F$. In the latter case, we fix an isomorphism $K \simeq F \oplus F$ to identify K with $F \oplus F$. Denote by ω the quadratic character of F^{\times}corresponding to K / F by local class field theory. Let \mathcal{O}_{F} be the integer ring of F and
\[

\mathcal{O}_{K}= $$
\begin{cases}\text { the integer ring of } K \cdots K \text { is a field } \\ \mathcal{O}_{F} \oplus \mathcal{O}_{F} & \cdots K=F \oplus F\end{cases}
$$
\]

For $z \in K$, we put $\operatorname{Tr}_{K / F}(z)=z+z^{\sigma}, N_{K / F}(z)=$ $z z^{\sigma}$ and $|z|_{K}=\left|N_{K / F}(z)\right|_{F}$, where σ denotes the nontrivial automorphism of K / F and $|\cdot|_{F}$ the normalized valuation of F. For $A \in M_{m n}(K)$, we put $A^{*}={ }^{t} A^{\sigma}$. By a lattice of a finite dimensional vector space W over K, we always mean an \mathcal{O}_{F}-lattice of W.
1.2. Let $W=K^{n}$ be the vector space of n column vectors in K. We fix a $Q \in G L_{n}(K)$ with $Q^{*}=-Q$ and define a nondegenerate F-valued alternating form \langle,$\rangle on W$ by $\left\langle w, w^{\prime}\right\rangle=\operatorname{Tr}_{K / F}\left(w^{*} Q w^{\prime}\right)$ $\left(w, w^{\prime} \in W\right)$. Let H be the Heisenberg group associated with the symplectic space ($W,\langle\rangle$,$) . By$ definition, the underlying set of H is $W \times F$ and the multiplication is given by $(w, x)\left(w^{\prime}, x^{\prime}\right)=\left(w+w^{\prime}, x+\right.$ $\left.x^{\prime}+\left\langle w, w^{\prime}\right\rangle / 2\right)$. Let $G=U(Q)=\left\{g \in G L_{n}(K) \mid\right.$ $\left.g^{*} Q g=Q\right\}$ be the unitary group of Q. Then G acts on H by $g \cdot(w, x)=(g w, x)(g \in G,(w, x) \in H)$.
1.3. From now on, we fix a nontrivial additive character ψ of F. Let (ρ, V) be a smooth irreducible representation of H such that $\rho((0, x))=\psi(x) \cdot \operatorname{Id}_{V}$ $(x \in F)$. By the Stone-von Neumann theorem, for each $g \in G$, there exists an automorphism $M(g)$ of V satisfying
(1.1) $M(g) \rho(h) M(g)^{-1}=\rho(g \cdot h) \quad(h \in H)$
and $g \mapsto M(g)$ defines a projective representation
of G on V (a metaplectic representation of G). To simplify the notation, we write $\rho(w, x)$ for $\rho((w, x))$.
1.4. We next recall a realization of $M(g)$ attached to (ρ, V) given in [MVW]. Let $g \in G(g \neq 1)$ and put $W_{g}=W / \operatorname{Ker}(g-1)$. Let $d_{g} w$ be the Haar measure on W_{g} self-dual with respect to the pairing $\left(w, w^{\prime}\right) \mapsto \psi\left(\left\langle w,(g-1) w^{\prime}\right\rangle\right)$. For each $v \in V$, there exist a lattice L_{v} of W_{g} and $v^{\prime} \in V$ satisfying the following condition; for any lattice L of W_{g} containing L_{v}, we have

$$
v^{\prime}=\int_{L} \psi\left(\frac{1}{2}\langle w, g w\rangle\right) \rho((1-g) w, 0) v d_{g} w
$$

We put $M(g) v=v^{\prime}$. If $g=1$, we set $M(g)=\mathrm{Id}_{V}$. Then $M(g): G \rightarrow \operatorname{End}(V)$ satisfies (1.1) and $M(g) \circ$ $M\left(g^{-1}\right)=\mathrm{Id}_{V}$ holds for any $g \in G$ (see [MVW, Ch. 2, II.2-4]).
1.5. To recall a definition of Weil constants (cf. [W]), let $d_{K} w$ be the Haar measure on K self-dual with respect to the pairing $\left(w, w^{\prime}\right) \mapsto$ $\psi\left(\operatorname{Tr}_{K / F}\left(w^{\sigma} w^{\prime}\right)\right)$, and $\mathcal{S}(K)$ the space of locally constant and compactly supported functions on K. Denote by \widehat{f} the Fourier transform of $f \in \mathcal{S}(K)$:

$$
\widehat{f}(w)=\int_{K} f\left(w^{\prime}\right) \psi\left(\operatorname{Tr}_{K / F}\left(w^{\sigma} w^{\prime}\right)\right) d_{K} w^{\prime}
$$

Then there exists a nonzero complex number $\lambda_{K}(\psi)$ such that the following equality holds for any $f \in$ $\mathcal{S}(K)$ and $a \in F^{\times}$:

$$
\begin{align*}
& \int_{K} f(w) \psi\left(a w w^{\sigma}\right) d_{K} w \tag{1.2}\\
= & \lambda_{K}(\psi) \omega(a)|a|_{F}^{-1} \int_{K} \widehat{f}(w) \psi\left(-a^{-1} w w^{\sigma}\right) d_{K} w .
\end{align*}
$$

It is known that $\lambda_{K}(\psi)^{2}=\omega(-1)$.
1.6. Let $R \in M_{n}(K)-\{0\}$ and $\operatorname{put} \operatorname{Ker}(R)=$ $\{w \in W \mid R w=0\}$ and $n(R)=\operatorname{dim}_{K} W / \operatorname{Ker}(R)$. Suppose that $\operatorname{Ker}(R)=\operatorname{Ker}\left(R^{*}\right)$. Then there exists an $A \in G L_{n}(K)$ such that $A^{*} R A=\left(\begin{array}{rr}R_{0} & 0 \\ 0 & 0\end{array}\right)$ with $R_{0} \in G L_{n(R)}(K)$. We set $\Delta(R)=\operatorname{det}\left(R_{0}\right) \in$ $K^{\times} / N_{K / F}\left(K^{\times}\right)$, which is independent of the choice of A. Note that $\Delta(R)=\operatorname{det}\left(\left(w_{i}^{*} R w_{j}\right)_{1 \leq i, j \leq n(R)}\right)$, where $\left\{w_{1}, \ldots, w_{n(R)}\right\}$ is a K-basis of $\bar{W} / \operatorname{Ker}(R)$. We put $n(R)=0$ and $\Delta(R)=1$ if R is the zero matrix.
1.7. Let $g \in G$ and put $R_{g}=Q(g-1)$. Then we have $\operatorname{Ker}\left(R_{g}\right)=\operatorname{Ker}\left(R_{g}^{*}\right)=\operatorname{Ker}(g-1)$. Set $\nu_{g}=$ $n\left(R_{g}\right)=\operatorname{dim}_{K} W / \operatorname{Ker}(g-1)$ and $\xi_{g}=\Delta\left(R_{g}\right)$. Let \mathcal{X} be the set of unitary characters χ of K^{\times}with
$\left.\chi\right|_{F^{\times}}=\omega$. For $\chi \in \mathcal{X}$, we put

$$
\begin{equation*}
\gamma_{\chi}(g)=\lambda_{K}(\psi)^{-\nu_{g}} \chi\left(\xi_{g}\right) \tag{1.3}
\end{equation*}
$$

Since χ is trivial on $N_{K / F}\left(K^{\times}\right), \gamma_{\chi}(g)$ is well-defined. It is easily verified that $\gamma_{\chi}(g) \gamma_{\chi}\left(g^{-1}\right)=1$. Set $\mathcal{M}_{\chi}(g)=\gamma_{\chi}(g) M(g)$. We are now able to state the main result of the paper:
1.8. Theorem. For $\chi \in \mathcal{X}$, the mapping $g \mapsto$ $\mathcal{M}_{\chi}(g)$ defines a smooth representation of G on V.

Remark 1. Theorem 1.8, with a suitable modification, also holds for symplectic groups and quaternion unitary groups. (In the symplectic case, we obtain a projective representation whose cocyles are valued in $\{ \pm 1\}$.) Theorem 1.8 also holds in the archimedean case.

Remark 2. A straightforward calculation shows that our splitting coincides with the one given in $[\mathrm{Ku}]$ in the case where G splits over F and (ρ, V) is the Schrödinger model.
2. Proof of the main result. 2.1. Let S be a Hermitian matrix of degree n. Note that $\Delta(S) \in F^{\times} / N_{K / F}\left(K^{\times}\right)$. Let $d_{S} w$ be the Haar measure on $W_{S}=W / \operatorname{Ker}(S)$ self-dual with respect to the pairing $\left(w, w^{\prime}\right) \mapsto \psi\left(\operatorname{Tr}_{K / F}\left(w^{*} S w^{\prime}\right)\right)$. The following well-known fact is an immediate consequence of (1.2).
2.2. Lemma. There exists a lattice L_{S} of W_{S} such that, for any lattice L of W_{S} containing L_{S}, we have

$$
\int_{L} \psi\left(w^{*} S w\right) d_{S} w=\lambda_{K}(\psi)^{n(S)} \omega(\Delta(S))
$$

2.3. For $g, g^{\prime} \in G$, let $c\left(g, g^{\prime}\right) \in \mathbf{C}^{\times}$be the cocycle of M given by

$$
M(g) M\left(g^{\prime}\right)=c\left(g, g^{\prime}\right) \cdot M\left(g g^{\prime}\right)
$$

By an argument similar to $[\mathrm{P}, \S 1.4]$, we see that the proof of Theorem 1.8 is reduced to that of the following fact.
2.4. Lemma. Let $g, g^{\prime} \in G$ and suppose that
(2.1) $g \neq 1, \operatorname{det}\left(g^{\prime}-1\right) \neq 0, \operatorname{det}\left(g g^{\prime}-1\right) \neq 0$.

Then, for $\chi \in \mathcal{X}$, we have

$$
c\left(g, g^{\prime}\right)=\frac{\gamma_{\chi}\left(g g^{\prime}\right)}{\gamma_{\chi}(g) \gamma_{\chi}\left(g^{\prime}\right)} .
$$

2.5. To show Lemma 2.4, we henceforth fix $g, g^{\prime} \in G$ satisfying (2.1) and put $S=Q\left(g^{\prime}-\right.$ 1) $\left(g g^{\prime}-1\right)^{-1}(g-1)$. Since $S=2^{-1}\left(Q B-B^{*} Q\right)$ with $B=g+\left(g^{-1}-1\right)\left(g g^{\prime}-1\right)^{-1}(g-1)$, we have $S^{*}=S$. Note that $\operatorname{Ker}(S)=\operatorname{Ker}(g-1)$.

2.6. Lemma. We have

$$
c\left(g, g^{\prime}\right)=\lambda_{K}(\psi)^{\nu_{g}} \cdot \omega(\Delta(S))
$$

Proof. Let $v \in V-\{0\}$. Taking sufficiently large lattices L and L^{\prime} of W_{g} and W respectively, we have

$$
\begin{aligned}
& M(g) M\left(g^{\prime}\right) v \\
& =\int_{L} d_{g} w \int_{L^{\prime}} d_{g^{\prime}} w^{\prime} \psi\left(\frac{1}{2}\langle w, g w\rangle+\frac{1}{2}\left\langle w^{\prime}, g^{\prime} w^{\prime}\right\rangle\right. \\
& \left.+\frac{1}{2}\left\langle(1-g) w,\left(1-g^{\prime}\right) w^{\prime}\right\rangle\right) \\
& \rho\left((1-g) w+\left(1-g^{\prime}\right) w^{\prime}, 0\right) v .
\end{aligned}
$$

We may (and do) assume that $\pi\left(g^{\prime} L^{\prime}\right) \subset L$, where $\pi: W \rightarrow W_{g}$ denotes the natural projection. Changing the variable w into $w+g^{\prime} w^{\prime}$, we obtain

$$
\begin{aligned}
& M(g) M\left(g^{\prime}\right) v \\
& =\int_{L^{\prime}} \psi\left(-\frac{1}{2}\left\langle w^{\prime},\left(1-g g^{\prime}\right) w^{\prime}\right\rangle\right) f\left(w^{\prime}\right) d_{g^{\prime}} w^{\prime}
\end{aligned}
$$

where

$$
\begin{aligned}
& f\left(w^{\prime}\right)=\int_{L} \psi\left(\frac{1}{2}\langle w,(g-1) w\rangle\right. \\
& \left.+\frac{1}{2}\left\langle w,\left(1-g^{-1}\right)\left(1+g g^{\prime}\right) w^{\prime}\right\rangle\right) \\
& \quad \rho\left((1-g) w+\left(1-g g^{\prime}\right) w^{\prime}, 0\right) v d_{g} w .
\end{aligned}
$$

A standard argument shows that the mapping $f: W \rightarrow V$ is compactly supported. We thus have

$$
\begin{aligned}
& M(g) M\left(g^{\prime}\right) v=\int_{W} d_{g^{\prime}} w^{\prime} \int_{L} d_{g} w \\
& \psi\left(-\frac{1}{2}\left\langle w^{\prime},\left(1-g g^{\prime}\right) w^{\prime}\right\rangle+\frac{1}{2}\langle w,(g-1) w\rangle\right. \\
& \left.+\frac{1}{2}\left\langle(1-g) w,\left(1+g g^{\prime}\right) w^{\prime}\right\rangle\right) \\
& \rho\left((1-g) w+\left(1-g g^{\prime}\right) w^{\prime}, 0\right) v .
\end{aligned}
$$

Changing the variable w^{\prime} into $w^{\prime}-\left(1-g g^{\prime}\right)^{-1}(1-g) w$, we obtain

$$
\begin{aligned}
& M(g) M\left(g^{\prime}\right) v \\
& =\int_{L} \psi\left(\frac{1}{2}\left\langle w,\left(g^{\prime}-1\right)\left(g g^{\prime}-1\right)^{-1}(g-1) w\right\rangle\right) d_{g} w \\
& \quad \times \int_{L^{\prime}} \psi\left(\frac{1}{2}\left\langle w^{\prime}, g g^{\prime} w^{\prime}\right\rangle\right) \rho\left(\left(1-g g^{\prime}\right) w^{\prime}, 0\right) v d_{g^{\prime}} w^{\prime} \\
& =\int_{L} \psi\left(w^{*} S w\right) d_{g} w \cdot \frac{d_{g^{\prime}} w^{\prime}}{d_{g g^{\prime}} w^{\prime}} M\left(g g^{\prime}\right) v .
\end{aligned}
$$

This implies

$$
\begin{aligned}
c\left(g, g^{\prime}\right) & =\frac{d_{g^{\prime}} w^{\prime}}{d_{g g^{\prime}} w^{\prime}} \cdot \frac{d_{g} w}{d_{S} w} \int_{L} \psi\left(w^{*} S w\right) d_{S} w \\
& =\lambda_{K}(\psi)^{\nu_{g}} \cdot \omega(\Delta(S))
\end{aligned}
$$

as claimed.
2.7. For $a, b \in K^{\times}$, we write $a \sim b$ if $a b^{-1} \in$ $N_{K / F}\left(K^{\times}\right)$. To prove Lemma 2.4, it now remains to show the following:

2.8. Lemma.

$$
\Delta(S) \sim \frac{\xi_{g} \xi_{g^{\prime}}}{\xi_{g g^{\prime}}}
$$

Proof. Set $Y=Q\left(g^{\prime}-1\right)\left(g g^{\prime}-1\right)^{-1} Q^{-1}$ and $X=Q(g-1)$, and take an element A of $G L_{n}(K)$ such that $X^{\prime}=A^{*} X A=\operatorname{diag}\left(x, 0_{n-\nu_{g}}\right)$ with $x \in$ $G L_{\nu_{g}}(K)$. Note that $S=Y X$ and $\xi_{g}=\operatorname{det} x$. Let

$$
Y^{\prime}=A^{*} Y\left(A^{*}\right)^{-1}=\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{3} & y_{4}
\end{array}\right), S^{\prime}=A^{*} S A=Y^{\prime} X^{\prime}
$$

with y_{1} of size ν_{g} and y_{4} of size $n-\nu_{g}$. Since

$$
S^{\prime}=\left(\begin{array}{ll}
y_{1} x & 0 \\
y_{3} x & 0
\end{array}\right)
$$

and $S^{* *}=S^{\prime}$, we have $y_{3}=0$. We next show that y_{4} is the identity matrix. Let u be any element of $K^{n-\nu_{g}}$ (a row vector) and $\mathbf{0}=(0, \ldots, 0) \in K^{\nu_{g}}$. Then we have $[\mathbf{0} u] Y^{\prime}=\left[\mathbf{0} u y_{4}\right]$. Observe that $[\mathbf{0} u] A^{*} Q=$ $[\mathbf{0} u] A^{*} Q g$, since $[\mathbf{0} u] X^{\prime}$ is the zero vector. It follows that

$$
\begin{aligned}
{[\mathbf{0} u] Y^{\prime} } & =[\mathbf{0} u] A^{*} Q\left(g^{\prime}-1\right)\left(g g^{\prime}-1\right)^{-1} Q^{-1}\left(A^{*}\right)^{-1} \\
& =[\mathbf{0} u] A^{*} Q\left(g g^{\prime}-g\right)\left(g g^{\prime}-1\right)^{-1} Q^{-1}\left(A^{*}\right)^{-1} \\
& =[\mathbf{0} u]-[\mathbf{0} u] A^{*} Q(g-1)\left(g g^{\prime}-1\right)^{-1} Q^{-1}\left(A^{*}\right)^{-1} \\
& =[\mathbf{0} u],
\end{aligned}
$$

which implies $y_{4}=1_{n-\nu_{g}}$ as claimed. We thus have $\operatorname{det} Y=\operatorname{det} Y^{\prime}=\operatorname{det} y_{1}$ and $\Delta(S) \sim \Delta\left(S^{\prime}\right)=\operatorname{det} y_{1}$. $\operatorname{det} x=\operatorname{det} Y \cdot \xi_{g} \sim \operatorname{det}\left(g^{\prime}-1\right) \operatorname{det}\left(g g^{\prime}-1\right)^{-1} \cdot \xi_{g}$. The proof of the lemma is now complete since $\xi_{g^{\prime}}=$ $\operatorname{det} Q \cdot \operatorname{det}\left(g^{\prime}-1\right)$ and $\xi_{g g^{\prime}}=\operatorname{det} Q \cdot \operatorname{det}\left(g g^{\prime}-1\right)$.

References

[Ka] Kazhdan, D.: Some applications of Weil representation. J. d'analyse Mathématique, 32, 235-248 (1977).
[Ku] Kudla, S. S.: Splitting metaplectic covers of dual reductive pairs. Israel J. Math., 87, 361-401 (1994).
[MVW] Mœglin, C., Vignéras, M.-F., and Waldspurger, J.-L.: Correspondences de Howe sur un corps
p-adique. Lecture Notes in Math., no. 1291, Springer, New York (1987).
[MS] Murase, A., and Sugano, T.: Local theory of primitive theta functions. Compositio Math., 123, 273-302 (2000).
[P] Perrin, P.: Représentations de Schrödinger, indice de Maslov et groupe métaplectique. Non Commutative Harmonic Analysis and Lie Groups. Lecture Notes in Math., no. 880, Springer, New York, pp. 370-407 (1981).
[R] Rao, R. R.: On some explicit formulas in the theory of Weil representation. Pacific J. Math., 157, 335-371 (1993).
[W] Weil, A.: Sur certains groupes d'opérateurs unitaires. Acta Math., 111, 143-211 (1964).

[^0]: 1991 Mathematics Subject Classification. 11F27, 22E50.

