Imaginary cyclic fields of degree p-1 whose relative class numbers are divisible by p

By Yasuhiro Kishi

Department of Mathematics, Tokyo Metropolitan University, 1-1, Minami-Ohsawa, Hachioji, Tokyo 192-0397 (Communicated by Shokichi Iyanaga, M. J. A., April 12, 2001)

Abstract: We give a sufficient condition for an imaginary cyclic field of degree p-1 containing $\mathbf{Q}(\zeta + \zeta^{-1})$ to have the relative class number divisible by p. As a consequence, we see that there exist infinitely many imaginary cyclic fields of degree p-1 with the relative class number divisible by p.

Key words: Cyclic field; class number; Frobenius group.

1. Statement of the results. Let L be an imaginary cyclic field, and let h and h^+ be the class numbers of L and its maximal real subfield, respectively. Then h is divisible by h^+ . The quotient h/h^+ is called the relative class number of L. In this paper, we study the divisibility of the relative class numbers of certain imaginary cyclic fields.

Let p be a fixed odd prime. Let ζ be a primitive p-th root of unity and put $\omega := \zeta + \zeta^{-1}$. It is expected that the class number of the cyclic field $\mathbf{Q}(\omega)$ of degree (p-1)/2 is not divisible by p (Vandiver's conjecture). The purpose of this paper is to give a sufficient condition for an imaginary cyclic field of degree p-1 containing $\mathbf{Q}(\omega)$ to have the relative class number divisible by p. As a consequence, we can get a similar result to Satgé [Sat] or Nakano [Nak]; that is, there are infinitely many imaginary cyclic fields of degree p-1 with the relative class number divisible by p.

Let $k = \mathbf{Q}(\sqrt{d})$ be a real quadratic field which is not contained in the cyclotomic field $\mathbf{Q}(\zeta)$. Then there exists a unique proper subextension of a bicyclic biquadratic extension $k(\zeta)/\mathbf{Q}(\omega)$ other than $\mathbf{Q}(\zeta)$ and $k(\omega)$. We denote it by M. M is an imaginary cyclic field of degree p-1, and its maximal real subfield coincides with $\mathbf{Q}(\omega)$ (See Fig. 1). We denote the norm map and the trace map of k/\mathbf{Q} by N and Tr, respectively.

Our main results are

Theorem 1. Let the notation be as above. Assume that there exists a unit ε of k with $\varepsilon \notin k^p$ which satisfies the condition

(1.1)
$$\operatorname{Tr}(\varepsilon) \equiv 0 \pmod{p^2}.$$

Then the relative class number of M is divisible by p.

Theorem 2. There exist infinitely many imaginary cyclic fields of degree p-1 whose maximal real subfields coincide with $\mathbf{Q}(\omega)$ and whose relative class numbers are divisible by p.

Remarks 1. (1) The cases p=3 and 5 of Theorem 1 are included in the results of Herz [He, Theorem 6] and Parry [Pa, Theorem 5], respectively.

- (2) Concerning the cases p=3 and 5 of Theorem 2, stronger results are known. Indeed, Nagel [Nag] (resp. Uehara [Ue]) proved that there exist infinitely many imaginary quadratic (resp. imaginary cyclic quartic) fields with relative class numbers divisible by an arbitrarily given rational integer.
- 2. Proofs of Theorems 1 and 2. Before proving Theorem 1, we state two propositions. First we extract some results from Sase [Sas, Proposition 2]. For a prime number p and an integer m, we denote the greatest exponent μ of p such that $p^{\mu} \mid m$ by $v_p(m)$.

Proposition 1 (Sase). Let $p \neq 2$ and q be prime numbers. Suppose that the polynomial

$$g(X) = X^p + \sum_{j=0}^{p-2} a_j X^j, \quad a_j \in \mathbf{Z}$$

is irreducible over **Q** and satisfies the condition

$$(2.1) v_q(a_i)$$

for some j, $0 \le j \le p-2$. Let θ be a root of g(X) = 0 and put $K := \mathbf{Q}(\theta)$.

(i) If q is different from p, then q is totally ramified

²⁰⁰⁰ Mathematics Subject Classification. Primary 11R29; Secondary 11R20, 12F10.

Fig. 1.

in K/\mathbf{Q} if and only if

(2.2)
$$0 < \frac{v_q(a_0)}{p} \le \frac{v_q(a_j)}{p - j}$$

for every j, $1 \le j \le p-2$.

(ii) Assume that $v_p(a_j) > 0$ for every $j, 1 \leq j \leq p-2$. Then p is totally ramified in K/\mathbf{Q} if and only if

(2.3)
$$0 < \frac{v_p(a_0)}{p} \le \frac{v_p(a_j)}{p-j}$$

for every j, $1 \le j \le p-2$.

By applying [Im-Ki, Corollary 2.6] to the case $L_1 = \mathbf{Q}(\sqrt{d})$ and $k = \mathbf{Q}$, we give the following.

Proposition 2 (Imaoka and Kishi). Let the notation be as in Section 1. Let τ be a generator of $Gal(M(\zeta)/M)$, and take an element γ of k. If $\gamma^{1-\tau} \notin M(\zeta)^p$, then the minimal splitting field E of the polynomial

$$f(X,\gamma) = \sum_{i=0}^{(p-1)/2} (-N(\gamma))^i \frac{p}{p-2i} \binom{p-i-1}{i}$$
$$\times X^{p-2i} - N(\gamma)^{(p-1)/2} \operatorname{Tr}(\gamma)$$

over \mathbf{Q} is a cyclic extension of M of degree p and the Galois group of E/\mathbf{Q} is the Frobenius group F_p of order p(p-1), where $\binom{s}{j}$ denotes the binomial coefficient:

$$\binom{s}{j} = \frac{s(s-1)\cdots(s-j+1)}{j!}$$

for integers s and j, $0 \le j \le s$.

Proof of Theorem 1. Let ε be a unit of a quadratic field $\mathbf{Q}(\sqrt{d})$ with $\varepsilon \notin \mathbf{Q}(\sqrt{d})^p$, and let τ be a generator of $\mathrm{Gal}(M(\zeta)/M)$. First we will show that

$$(2.4) \varepsilon^{1-\tau} \notin M(\zeta)^p.$$

Since M is the fixed field of $\langle \tau \rangle$ and does not contain

 ε , we have $\varepsilon^{1+\tau}=N(\varepsilon)$. Then we have

(2.5)
$$\varepsilon^{1-\tau} = \varepsilon^{2-(1+\tau)} = \varepsilon^2 N(\varepsilon^{-1}) = \pm \varepsilon^2.$$

On the other hand, we have $\varepsilon \notin M(\zeta)^p$ because the degree $[M(\zeta):k]$ is relatively prime to p. From this and (2.5), the condition (2.4) follows. By Proposition 2, therefore, we see that the minimal splitting field E of the polynomial $f(X,\varepsilon)$ over \mathbf{Q} is an imaginary cyclic extension of M of degree p and the Galois group of E/\mathbf{Q} is the Frobenius group F_p .

Next we will show that E is unramified over M. Let θ be a root of $f_p(X) = 0$. Let q be a prime number. A prime divisor of q in M is ramified in E if and only if q is totally ramified in $\mathbf{Q}(\theta)$ because [E:M] and $[M:\mathbf{Q}]$ are relatively prime. Hence we have only to verify that no primes are totally ramified in $\mathbf{Q}(\theta)/\mathbf{Q}$.

The polynomial $f_p(X)$ satisfies the condition (2.1) for j=1 because the coefficient of X in it is

$$(-N(\varepsilon))^{(p-1)/2} \frac{p}{p-2 \cdot (p-1)/2} \binom{p-(p-1)/2-1}{(p-1)/2}$$

= $\pm p$.

From this, moreover, we see that the condition (2.2) does not hold for every prime $q \neq p$. When $q \neq p$, therefore, we see by Proposition 1 that q is not totally ramified in $\mathbf{Q}(\theta)/\mathbf{Q}$. It is clear that all coefficient of terms of $f_p(X)$ except the highest degree X^p are divisible by p. By the assumption (1.1), the constant term is also divisible by p. On the other hand, we have

$$\frac{v_p(N(\varepsilon)^{(p-1)/2}\operatorname{Tr}(\varepsilon))}{p} = \frac{v_p(\operatorname{Tr}(\varepsilon))}{p} \geq \frac{2}{p}$$

and

$$\frac{v_p(-N(\varepsilon)^{(p-1)/2}p)}{p-1} = \frac{1}{p-1}.$$

Then we see that the condition (2.3) does not hold for j=1 because $p \geq 3$. Hence p is not totally ramified in $\mathbf{Q}(\theta)/\mathbf{Q}$ either. Therefore E is an unramified cyclic extension of M. Hence the class number of M is divisible by p.

Let h^- denote the relative class number of M. Assume that $p \nmid h^-$. Then $E/\mathbf{Q}(\omega)$ must be abelian. This contradicts that E is an F_p -field. Hence we have $p \mid h^-$, and the proof of Theorem 1 is complete. \square

Let us quote a proposition which we need for the proof of Theorem 2.

Proposition 3 (Katayama [Ka]). For every prime $q \neq 5$, $\varepsilon = (q + 2 + \sqrt{q(q+4)})/2$ is a fundamental unit of $\mathbf{Q}(\sqrt{q(q+4)})$.

Proof of Theorem 2. We can take infinitely many prime integers q so that we have $q+2\equiv 0\pmod{p^2}$ for a fixed odd prime p. Then for each of such q, $\mathbf{Q}(\sqrt{q(q+4)})$ has a fundamental unit ε which satisfies $\mathrm{Tr}(\varepsilon)\equiv 0\pmod{p^2}$ by Proposition 3. Therefore the statement follows from Theorem 1. \square

Remarks 2. (1) Assume that p is a Fermat number; that is, p is a prime number of the form 2^t+1 , $t\in \mathbf{N}$. Then every proper subfield M' of M must be contained in $\mathbf{Q}(\omega)$. If Vandiver's conjecture holds, then the class number of M' is not divisible by p. Hence every unramified cyclic extension of M of degree p which is normal over \mathbf{Q} , if it exists, is an F_p -field.

4574

4987

1

2

(2) Next consider the case that $p \equiv 3 \pmod{4}$. Then M contains the imaginary quadratic field $\mathbf{Q}(\sqrt{-pd})$ as a subfield. If there exists a unit $\varepsilon \in k \setminus k^p$ with the condition (1.1) and the class number of $\mathbf{Q}(\sqrt{-pd})$ is divisible by p, then the p-rank of the ideal class group of M is greater than 1. Indeed, let E be an F_p -field containing M which is unramified over M, and let E_1 be an unramified cyclic extension of $\mathbf{Q}(\sqrt{-pd})$ of degree p. Then the composite field $E_1 \cdot M$ is also an unramified cyclic extension of M of degree p. Since both E_1 and M are normal over \mathbf{Q} , so is $E_1 \cdot M$. The Galois group $Gal(E_1 \cdot M/\mathbf{Q})$ is not isomorphic to the Frobenius group F_p because $Gal(E_1 \cdot M/\mathbf{Q})$ has a subgroup which is isomorphic to the cyclic group $C_{p(p-1)/2}$ of order p(p-1)/2. Therefore $E_1 \cdot M$ is different from E.

Exponent Structure of the ideal Structure of the ideal dclass group of $\mathbf{Q}(\sqrt{-7d})$ class group of Mof ε_0 (m) 73 4 14] 14, 7 3 2 337 28] 28, 14. 2 3 56] 449 56, 14, [2, 2, 2]710 2 14, 2, 2] 56. 56. 1 28, 228, 28, [4, 2]817 934 2 [14, 2]2702, 14] 14, 2, 2[2, 2, 2]986 4 434, 14, 28, 2, 2] [2, 2, 2]1067 1 364. 14, 2 14, 2, 22] 1986 2198, 14, 2 2001 14, 2, 214, 14, 14, 2, 2] 2926, 2273 4 7 [154]2 14, 2, 2] [2, 2, 2]22741022, 14, 2334 2 14, 2, 2686, 14, 14] 14, 2, 2, 2[2, 2]23551 3206, 14, [2, 2]2 [14, 2]70, 70, 2413 84, 2] 210. 3] 2498 1 420, 56, 2] 2642 4 7448, 14] 2 2838 14, 2, 2, 2] 686, 14, [2, 2, 2, 2]2 42, 2, 23002 882, 14, 142 28, 22044, 14, [2, 2]3106 2 3323 98, 2] 1274, 182] 1 28, 2, 2] 2] [13132,14, 3603 14, 2, 2] 2] 3706 4 7322, 14, 70, 2] 3722 4 490, 14, [14, 2]4234 4 [14, 2, 2]2366,14, [2, 2, 2]43734 70] 7210, 7

84, 2]

70, 2

[35028,

[38710,

14]

[14]

Table I

Example. In the case p = 7, there are 28 square free positive integers d in the range $0 \le d \le 5000$ for which a unit $\varepsilon_0^m \in \mathbf{Q}(\sqrt{d}) \setminus \mathbf{Q}(\sqrt{d})^7$ (for some m) satisfies the condition $\mathrm{Tr}(\varepsilon_0^m) \equiv 0 \pmod{7^2}$ and the class number of $\mathbf{Q}(\sqrt{-7d})$ is divisible by 7, where ε_0 is a fundamental unit of $\mathbf{Q}(\sqrt{d})$. In Table I, we list all of these 28 d's with the structures of the ideal class groups of $\mathbf{Q}(\sqrt{-7d})$ and of M. We denote an abelian group $C_{n_1} \times C_{n_2} \times \cdots \times C_{n_r}$ by $[n_1, n_2, \ldots, n_r]$, where C_n denote a cyclic group of order n.

References

- [He] Herz, C. S.: Construction of class fields. Seminar on Complex Multiplication: Seminar held at the Institute for Advanced Study, Princeton, N.J., 1957-58. (eds. Borel, A., Chowla, S., Herz, C. S., Iwasawa, K., and Serre, J.-P.). Lecture Notes in Math., no. 21, Springer, Berlin-Heidelberg-New York, pp. VII-1-VII-21 (1966).
- [Im-Ki] Imaoka, M., and Kishi, Y.: Spiegelung Relations Between Dihedral Extensions and Frobenius Extensions. Tokyo Metropolitan Univ. Math. Preprint Series, no. 12, (2000).

- [Ka] Katayama, S.: On fundamental units of real quadratic fields with norm +1. Proc. Japan Acad., 68A, 18–20 (1992).
- [Nag] Nagel, Tr.: Über die Klassenzahl imaginärquadratischer Zahlköper. Abh. Math. Sem. Univ. Hamburg, 1, 140–150 (1922).
- [Nak] Nakano, S.: On the construction of certain number fields. Tokyo J. Math., 6, 389–395 (1983).
- [Pa] Parry, C. J.: Real quadratic fields with class numbers divisible by five. Math. Comp., 32, 1261– 1270 (1978).
- [Sas] Sase, M.: On a family of quadratic fields whose class numbers are divisible by five. Proc. Japan Acad., 74A, 120–123 (1998).
- [Sat] Satgé, M.: Corps résolubles et divisibilité de nombres de classes d'idéaux. Enseign. Math.(2), 25, 165–188 (1979).
- [Ue] Uehara, T.: On class numbers of cyclic quartic fields. Pacific J. Math., 122, 251–255 (1986).