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Imaginary cyclic fields of degree p − 1

whose relative class numbers are divisible by p
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Abstract: We give a sufficient condition for an imaginary cyclic field of degree p − 1
containing Q(ζ + ζ−1) to have the relative class number divisible by p. As a consequence, we
see that there exist infinitely many imaginary cyclic fields of degree p − 1 with the relative class
number divisible by p.
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1. Statement of the results. Let L be an
imaginary cyclic field, and let h and h+ be the class
numbers of L and its maximal real subfield, respec-
tively. Then h is divisible by h+. The quotient h/h+

is called the relative class number of L. In this paper,
we study the divisibility of the relative class numbers
of certain imaginary cyclic fields.

Let p be a fixed odd prime. Let ζ be a primitive
p-th root of unity and put ω := ζ + ζ−1. It is ex-
pected that the class number of the cyclic field Q(ω)
of degree (p − 1)/2 is not divisible by p (Vandiver’s
conjecture). The purpose of this paper is to give a
sufficient condition for an imaginary cyclic field of de-
gree p− 1 containing Q(ω) to have the relative class
number divisible by p. As a consequence, we can get
a similar result to Satgé [Sat] or Nakano [Nak]; that
is, there are infinitely many imaginary cyclic fields of
degree p− 1 with the relative class number divisible
by p.

Let k = Q(
√
d) be a real quadratic field which

is not contained in the cyclotomic field Q(ζ). Then
there exists a unique proper subextension of a bi-
cyclic biquadratic extension k(ζ)/Q(ω) other than
Q(ζ) and k(ω). We denote it by M . M is an imagi-
nary cyclic field of degree p−1, and its maximal real
subfield coincides with Q(ω) (See Fig. 1). We denote
the norm map and the trace map of k/Q by N and
Tr, respectively.

Our main results are
Theorem 1. Let the notation be as above.

Assume that there exists a unit ε of k with ε /∈ kp

which satisfies the condition
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(1.1) Tr(ε) ≡ 0 (mod p2).

Then the relative class number of M is divisible by
p.

Theorem 2. There exist infinitely many
imaginary cyclic fields of degree p − 1 whose max-
imal real subfields coincide with Q(ω) and whose
relative class numbers are divisible by p.

Remarks 1. (1) The cases p = 3 and 5 of The-
orem 1 are included in the results of Herz [He, The-
orem 6] and Parry [Pa, Theorem 5], respectively.
(2) Concerning the cases p = 3 and 5 of Theorem
2, stronger results are known. Indeed, Nagel [Nag]
(resp. Uehara [Ue]) proved that there exist infinitely
many imaginary quadratic (resp. imaginary cyclic
quartic) fields with relative class numbers divisible
by an arbitrarily given rational integer.

2. Proofs of Theorems 1 and 2. Before
proving Theorem 1, we state two propositions. First
we extract some results from Sase [Sas, Proposition
2]. For a prime number p and an integer m, we
denote the greatest exponent µ of p such that pµ | m
by vp(m).

Proposition 1 (Sase). Let p (6= 2) and q be
prime numbers. Suppose that the polynomial

g(X) = Xp +
p−2∑
j=0

ajX
j , aj ∈ Z

is irreducible over Q and satisfies the condition

vq(aj) < p− j(2.1)

for some j, 0 ≤ j ≤ p−2. Let θ be a root of g(X) = 0
and put K := Q(θ).
(i) If q is different from p, then q is totally ramified
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Fig. 1.

in K/Q if and only if

0 <
vq(a0)
p
≤ vq(aj)

p− j
(2.2)

for every j, 1 ≤ j ≤ p− 2.
(ii) Assume that vp(aj) > 0 for every j, 1 ≤ j ≤

p− 2. Then p is totally ramified in K/Q if and
only if

0 <
vp(a0)
p

≤ vp(aj)
p− j

(2.3)

for every j, 1 ≤ j ≤ p− 2.
By applying [Im-Ki, Corollary 2.6] to the case

L1 = Q(
√
d) and k = Q, we give the following.

Proposition 2 (Imaoka and Kishi). Let the
notation be as in Section 1. Let τ be a generator
of Gal(M(ζ)/M), and take an element γ of k. If
γ1−τ /∈ M(ζ)p, then the minimal splitting field E of
the polynomial

f(X, γ) =
(p−1)/2∑
i=0

(−N(γ))i
p

p− 2i

(
p− i− 1

i

)
×Xp−2i −N(γ)(p−1)/2 Tr(γ)

over Q is a cyclic extension of M of degree p and
the Galois group of E/Q is the Frobenius group Fp
of order p(p − 1), where

(
s
j

)
denotes the binomial

coefficient: (
s

j

)
=
s(s− 1) · · · (s− j + 1)

j!

for integers s and j, 0 ≤ j ≤ s.
Proof of Theorem 1. Let ε be a unit of a

quadratic field Q(
√
d) with ε /∈ Q(

√
d)p, and let τ

be a generator of Gal(M(ζ)/M). First we will show
that

ε1−τ /∈M(ζ)p.(2.4)

Since M is the fixed field of 〈τ〉 and does not contain

ε, we have ε1+τ = N(ε). Then we have

ε1−τ = ε2−(1+τ) = ε2N(ε−1) = ±ε2.(2.5)

On the other hand, we have ε /∈ M(ζ)p because the
degree [M(ζ) : k] is relatively prime to p. From this
and (2.5), the condition (2.4) follows. By Proposi-
tion 2, therefore, we see that the minimal splitting
field E of the polynomial f(X, ε) over Q is an imagi-
nary cyclic extension of M of degree p and the Galois
group of E/Q is the Frobenius group Fp.

Next we will show that E is unramified over M .
Let θ be a root of fp(X) = 0. Let q be a prime
number. A prime divisor of q in M is ramified in E

if and only if q is totally ramified in Q(θ) because
[E : M ] and [M : Q] are relatively prime. Hence we
have only to verify that no primes are totally ramified
in Q(θ)/Q.

The polynomial fp(X) satisfies the condition
(2.1) for j = 1 because the coefficient of X in it
is

(−N(ε))(p−1)/2 p

p− 2 · (p− 1)/2

(
p− (p− 1)/2− 1

(p− 1)/2

)
= ±p.

From this, moreover, we see that the condition (2.2)
does not hold for every prime q 6= p. When q 6= p,
therefore, we see by Proposition 1 that q is not totally
ramified in Q(θ)/Q. It is clear that all coefficient
of terms of fp(X) except the highest degree Xp are
divisible by p. By the assumption (1.1), the constant
term is also divisible by p. On the other hand, we
have

vp(N(ε)(p−1)/2 Tr(ε))
p

=
vp(Tr(ε))

p
≥ 2

p

and

vp(−N(ε)(p−1)/2p)
p− 1

=
1

p− 1
.

Then we see that the condition (2.3) does not hold
for j = 1 because p ≥ 3. Hence p is not totally rami-
fied in Q(θ)/Q either. Therefore E is an unramified
cyclic extension of M . Hence the class number of M
is divisible by p.

Let h− denote the relative class number of M .
Assume that p - h−. Then E/Q(ω) must be abelian.
This contradicts that E is an Fp-field. Hence we have
p | h−, and the proof of Theorem 1 is complete.

Let us quote a proposition which we need for the
proof of Theorem 2.
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Proposition 3 (Katayama [Ka]). For every
prime q 6= 5, ε = (q + 2 +

√
q(q + 4))/2 is a funda-

mental unit of Q(
√
q(q + 4)).

Proof of Theorem 2. We can take infinitely
many prime integers q so that we have q + 2 ≡
0 (mod p2) for a fixed odd prime p. Then for each
of such q, Q(

√
q(q + 4)) has a fundamental unit ε

which satisfies Tr(ε) ≡ 0 (mod p2) by Proposition 3.
Therefore the statement follows from Theorem 1.

Remarks 2. (1) Assume that p is a Fermat
number; that is, p is a prime number of the form
2t + 1, t ∈ N. Then every proper subfield M ′ of M
must be contained in Q(ω). If Vandiver’s conjecture
holds, then the class number of M ′ is not divisible
by p. Hence every unramified cyclic extension of M
of degree p which is normal over Q, if it exists, is an
Fp-field.

Table I

d
Exponent
of ε0 (m)

Structure of the ideal
class group of Q(

√
−7d)

Structure of the ideal
class group of M

73
337
449
710
817
934
986

1067
1986
2001
2273
2274
2334
2355
2413
2498
2642
2838
3002
3106
3323
3603
3706
3722
4234
4373
4574
4987

4
3
3
2
1
2
4
1
2
2
4
2
2
1
2
1
4
2
2
2
2
1
4
4
4
4
1
2

[ 14]
[ 28]
[ 56]
[ 14, 2, 2]
[ 28, 2]
[ 14, 2]
[ 14, 2, 2]
[ 28, 2, 2]
[ 14, 2, 2]
[ 14, 2, 2]
[154]
[ 14, 2, 2]
[ 14, 2, 2]
[ 14, 2, 2, 2]
[ 14, 2]
[ 84, 2]
[ 56, 2]
[ 14, 2, 2, 2]
[ 42, 2, 2]
[ 28, 2]
[ 98, 2]
[ 28, 2, 2]
[ 14, 2, 2]
[ 70, 2]
[ 14, 2, 2]
[ 70]
[ 84, 2]
[ 70, 2]

[ 14, 7]
[ 28, 14, 2]
[ 56, 14, 2]
[ 56, 56, 2, 2, 2]
[ 28, 28, 4, 2]
[ 2702, 14]
[ 434, 14, 2, 2, 2]
[ 364, 14, 2, 2, 2]
[ 2198, 14, 2]
[ 14, 14, 14, 2, 2]
[ 2926, 7]
[ 1022, 14, 2, 2, 2]
[ 686, 14, 14]
[ 3206, 14, 2, 2]
[ 70, 70, 2, 2]
[ 420, 210, 3]
[ 7448, 14]
[ 686, 14, 2, 2, 2, 2]
[ 882, 14, 14]
[ 2044, 14, 2, 2]
[ 1274, 182]
[13132, 14, 2]
[ 7322, 14, 2]
[ 490, 14, 14, 2]
[ 2366, 14, 2, 2, 2]
[ 7210, 7]
[35028, 14]
[38710, 14]

(2) Next consider the case that p ≡ 3 (mod 4). Then
M contains the imaginary quadratic field Q(

√
−pd)

as a subfield. If there exists a unit ε ∈ k\kp with the
condition (1.1) and the class number of Q(

√
−pd) is

divisible by p, then the p-rank of the ideal class group
of M is greater than 1. Indeed, let E be an Fp-field
containing M which is unramified over M , and let
E1 be an unramified cyclic extension of Q(

√
−pd) of

degree p. Then the composite field E1 ·M is also an
unramified cyclic extension of M of degree p. Since
both E1 and M are normal over Q, so is E1 ·M .
The Galois group Gal(E1·M/Q) is not isomorphic to
the Frobenius group Fp because Gal(E1 ·M/Q) has
a subgroup which is isomorphic to the cyclic group
Cp(p−1)/2 of order p(p − 1)/2. Therefore E1 ·M is
different from E.



58 Y. Kishi [Vol. 77(A),

Example. In the case p = 7, there are 28
square free positive integers d in the range 0 ≤ d ≤
5000 for which a unit εm0 ∈ Q(

√
d) \ Q(

√
d)7 (for

some m) satisfies the condition Tr(εm0 ) ≡ 0 (mod 72)
and the class number of Q(

√
−7d) is divisible by 7,

where ε0 is a fundamental unit of Q(
√
d). In Table

I, we list all of these 28 d’s with the structures of
the ideal class groups of Q(

√
−7d) and of M . We

denote an abelian group Cn1 × Cn2 × · · · × Cnr by
[n1, n2, . . . , nr], where Cn denote a cyclic group of
order n.
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