Imaginary cyclic fields of degree $p-1$ whose relative class numbers are divisible by p

By Yasuhiro Kishi
Department of Mathematics, Tokyo Metropolitan University, 1-1, Minami-Ohsawa, Hachioji, Tokyo 192-0397
(Communicated by Shokichi Iyanaga, m. J. A., April 12, 2001)

Abstract

We give a sufficient condition for an imaginary cyclic field of degree $p-1$ containing $\mathbf{Q}\left(\zeta+\zeta^{-1}\right)$ to have the relative class number divisible by p. As a consequence, we see that there exist infinitely many imaginary cyclic fields of degree $p-1$ with the relative class number divisible by p.

Key words: Cyclic field; class number; Frobenius group.

1. Statement of the results. Let L be an imaginary cyclic field, and let h and h^{+}be the class numbers of L and its maximal real subfield, respectively. Then h is divisible by h^{+}. The quotient h / h^{+} is called the relative class number of L. In this paper, we study the divisibility of the relative class numbers of certain imaginary cyclic fields.

Let p be a fixed odd prime. Let ζ be a primitive p-th root of unity and put $\omega:=\zeta+\zeta^{-1}$. It is expected that the class number of the cyclic field $\mathbf{Q}(\omega)$ of degree $(p-1) / 2$ is not divisible by p (Vandiver's conjecture). The purpose of this paper is to give a sufficient condition for an imaginary cyclic field of degree $p-1$ containing $\mathbf{Q}(\omega)$ to have the relative class number divisible by p. As a consequence, we can get a similar result to Satgé [Sat] or Nakano [Nak]; that is, there are infinitely many imaginary cyclic fields of degree $p-1$ with the relative class number divisible by p.

Let $k=\mathbf{Q}(\sqrt{d})$ be a real quadratic field which is not contained in the cyclotomic field $\mathbf{Q}(\zeta)$. Then there exists a unique proper subextension of a bicyclic biquadratic extension $k(\zeta) / \mathbf{Q}(\omega)$ other than $\mathbf{Q}(\zeta)$ and $k(\omega)$. We denote it by $M . M$ is an imaginary cyclic field of degree $p-1$, and its maximal real subfield coincides with $\mathbf{Q}(\omega)$ (See Fig. 1). We denote the norm map and the trace map of k / \mathbf{Q} by N and Tr , respectively.

Our main results are
Theorem 1. Let the notation be as above. Assume that there exists a unit ε of k with $\varepsilon \notin k^{p}$ which satisfies the condition

[^0]\[

$$
\begin{equation*}
\operatorname{Tr}(\varepsilon) \equiv 0\left(\bmod p^{2}\right) \tag{1.1}
\end{equation*}
$$

\]

Then the relative class number of M is divisible by p.

Theorem 2. There exist infinitely many imaginary cyclic fields of degree $p-1$ whose maximal real subfields coincide with $\mathbf{Q}(\omega)$ and whose relative class numbers are divisible by p.

Remarks 1. (1) The cases $p=3$ and 5 of Theorem 1 are included in the results of Herz [He, Theorem 6] and Parry [Pa , Theorem 5], respectively.
(2) Concerning the cases $p=3$ and 5 of Theorem 2, stronger results are known. Indeed, Nagel [Nag] (resp. Uehara [Ue]) proved that there exist infinitely many imaginary quadratic (resp. imaginary cyclic quartic) fields with relative class numbers divisible by an arbitrarily given rational integer.
2. Proofs of Theorems 1 and 2. Before proving Theorem 1, we state two propositions. First we extract some results from Sase [Sas, Proposition 2]. For a prime number p and an integer m, we denote the greatest exponent μ of p such that $p^{\mu} \mid m$ by $v_{p}(m)$.

Proposition 1 (Sase). Let $p(\neq 2)$ and q be prime numbers. Suppose that the polynomial

$$
g(X)=X^{p}+\sum_{j=0}^{p-2} a_{j} X^{j}, \quad a_{j} \in \mathbf{Z}
$$

is irreducible over \mathbf{Q} and satisfies the condition

$$
\begin{equation*}
v_{q}\left(a_{j}\right)<p-j \tag{2.1}
\end{equation*}
$$

for some $j, 0 \leq j \leq p-2$. Let θ be a root of $g(X)=0$ and put $K:=\mathbf{Q}(\theta)$.
(i) If q is different from p, then q is totally ramified

Fig. 1.
in K / \mathbf{Q} if and only if

$$
\begin{equation*}
0<\frac{v_{q}\left(a_{0}\right)}{p} \leq \frac{v_{q}\left(a_{j}\right)}{p-j} \tag{2.2}
\end{equation*}
$$

for every $j, 1 \leq j \leq p-2$.
(ii) Assume that $v_{p}\left(a_{j}\right)>0$ for every $j, 1 \leq j \leq$ $p-2$. Then p is totally ramified in K / \mathbf{Q} if and only if

$$
\begin{equation*}
0<\frac{v_{p}\left(a_{0}\right)}{p} \leq \frac{v_{p}\left(a_{j}\right)}{p-j} \tag{2.3}
\end{equation*}
$$

for every $j, 1 \leq j \leq p-2$.
By applying [Im-Ki, Corollary 2.6] to the case $L_{1}=\mathbf{Q}(\sqrt{d})$ and $k=\mathbf{Q}$, we give the following.

Proposition 2 (Imaoka and Kishi). Let the notation be as in Section 1. Let τ be a generator of $\operatorname{Gal}(M(\zeta) / M)$, and take an element γ of k. If $\gamma^{1-\tau} \notin M(\zeta)^{p}$, then the minimal splitting field E of the polynomial

$$
\begin{aligned}
f(X, \gamma)= & \sum_{i=0}^{(p-1) / 2}(-N(\gamma))^{i} \frac{p}{p-2 i}\binom{p-i-1}{i} \\
& \times X^{p-2 i}-N(\gamma)^{(p-1) / 2} \operatorname{Tr}(\gamma)
\end{aligned}
$$

over \mathbf{Q} is a cyclic extension of M of degree p and the Galois group of E / \mathbf{Q} is the Frobenius group F_{p} of order $p(p-1)$, where $\binom{s}{j}$ denotes the binomial coefficient:

$$
\binom{s}{j}=\frac{s(s-1) \cdots(s-j+1)}{j!}
$$

for integers s and $j, 0 \leq j \leq s$.
Proof of Theorem 1. Let ε be a unit of a quadratic field $\mathbf{Q}(\sqrt{d})$ with $\varepsilon \notin \mathbf{Q}(\sqrt{d})^{p}$, and let τ be a generator of $\operatorname{Gal}(M(\zeta) / M)$. First we will show that

$$
\begin{equation*}
\varepsilon^{1-\tau} \notin M(\zeta)^{p} \tag{2.4}
\end{equation*}
$$

Since M is the fixed field of $\langle\tau\rangle$ and does not contain
ε, we have $\varepsilon^{1+\tau}=N(\varepsilon)$. Then we have

$$
\begin{equation*}
\varepsilon^{1-\tau}=\varepsilon^{2-(1+\tau)}=\varepsilon^{2} N\left(\varepsilon^{-1}\right)= \pm \varepsilon^{2} \tag{2.5}
\end{equation*}
$$

On the other hand, we have $\varepsilon \notin M(\zeta)^{p}$ because the degree $[M(\zeta): k]$ is relatively prime to p. From this and (2.5), the condition (2.4) follows. By Proposition 2, therefore, we see that the minimal splitting field E of the polynomial $f(X, \varepsilon)$ over \mathbf{Q} is an imaginary cyclic extension of M of degree p and the Galois group of E / \mathbf{Q} is the Frobenius group F_{p}.

Next we will show that E is unramified over M. Let θ be a root of $f_{p}(X)=0$. Let q be a prime number. A prime divisor of q in M is ramified in E if and only if q is totally ramified in $\mathbf{Q}(\theta)$ because $[E: M]$ and $[M: \mathbf{Q}]$ are relatively prime. Hence we have only to verify that no primes are totally ramified in $\mathbf{Q}(\theta) / \mathbf{Q}$.

The polynomial $f_{p}(X)$ satisfies the condition (2.1) for $j=1$ because the coefficient of X in it is
$(-N(\varepsilon))^{(p-1) / 2} \frac{p}{p-2 \cdot(p-1) / 2}\binom{p-(p-1) / 2-1}{(p-1) / 2}$
$= \pm p$.
From this, moreover, we see that the condition (2.2) does not hold for every prime $q \neq p$. When $q \neq p$, therefore, we see by Proposition 1 that q is not totally ramified in $\mathbf{Q}(\theta) / \mathbf{Q}$. It is clear that all coefficient of terms of $f_{p}(X)$ except the highest degree X^{p} are divisible by p. By the assumption (1.1), the constant term is also divisible by p. On the other hand, we have

$$
\frac{v_{p}\left(N(\varepsilon)^{(p-1) / 2} \operatorname{Tr}(\varepsilon)\right)}{p}=\frac{v_{p}(\operatorname{Tr}(\varepsilon))}{p} \geq \frac{2}{p}
$$

and

$$
\frac{v_{p}\left(-N(\varepsilon)^{(p-1) / 2} p\right)}{p-1}=\frac{1}{p-1} .
$$

Then we see that the condition (2.3) does not hold for $j=1$ because $p \geq 3$. Hence p is not totally ramified in $\mathbf{Q}(\theta) / \mathbf{Q}$ either. Therefore E is an unramified cyclic extension of M. Hence the class number of M is divisible by p.

Let h^{-}denote the relative class number of M. Assume that $p \nmid h^{-}$. Then $E / \mathbf{Q}(\omega)$ must be abelian. This contradicts that E is an F_{p}-field. Hence we have $p \mid h^{-}$, and the proof of Theorem 1 is complete.

Let us quote a proposition which we need for the proof of Theorem 2.

Proposition 3 (Katayama [Ka]). For every prime $q \neq 5, \varepsilon=(q+2+\sqrt{q(q+4)}) / 2$ is a fundamental unit of $\mathbf{Q}(\sqrt{q(q+4)})$.

Proof of Theorem 2. We can take infinitely many prime integers q so that we have $q+2 \equiv$ $0\left(\bmod p^{2}\right)$ for a fixed odd prime p. Then for each of such $q, \mathbf{Q}(\sqrt{q(q+4)})$ has a fundamental unit ε which satisfies $\operatorname{Tr}(\varepsilon) \equiv 0\left(\bmod p^{2}\right)$ by Proposition 3. Therefore the statement follows from Theorem 1.

Remarks 2. (1) Assume that p is a Fermat number; that is, p is a prime number of the form $2^{t}+1, t \in \mathbf{N}$. Then every proper subfield M^{\prime} of M must be contained in $\mathbf{Q}(\omega)$. If Vandiver's conjecture holds, then the class number of M^{\prime} is not divisible by p. Hence every unramified cyclic extension of M of degree p which is normal over \mathbf{Q}, if it exists, is an F_{p}-field.
(2) Next consider the case that $p \equiv 3(\bmod 4)$. Then M contains the imaginary quadratic field $\mathbf{Q}(\sqrt{-p d})$ as a subfield. If there exists a unit $\varepsilon \in k \backslash k^{p}$ with the condition (1.1) and the class number of $\mathbf{Q}(\sqrt{-p d})$ is divisible by p, then the p-rank of the ideal class group of M is greater than 1 . Indeed, let E be an F_{p}-field containing M which is unramified over M, and let E_{1} be an unramified cyclic extension of $\mathbf{Q}(\sqrt{-p d})$ of degree p. Then the composite field $E_{1} \cdot M$ is also an unramified cyclic extension of M of degree p. Since both E_{1} and M are normal over \mathbf{Q}, so is $E_{1} \cdot M$. The Galois group $\operatorname{Gal}\left(E_{1} \cdot M / \mathbf{Q}\right)$ is not isomorphic to the Frobenius group F_{p} because $\operatorname{Gal}\left(E_{1} \cdot M / \mathbf{Q}\right)$ has a subgroup which is isomorphic to the cyclic group $C_{p(p-1) / 2}$ of order $p(p-1) / 2$. Therefore $E_{1} \cdot M$ is different from E.

Table I

d	Exponent of $\varepsilon_{0}(\mathrm{~m})$	Structure of the ideal class group of $\mathbf{Q}(\sqrt{-7 d})$	Structure of the ideal class group of M
73		14]	$14,7]$
337	3	[28]	$28,14,2]$
449	3	[56]	$56,14,2]$
710	2	[14, 2, 2]	$56, \quad 56,2,2,2]$
817	1	[28, 2]	$28,28,4,2]$
934	2	[14, 2]	2702, 14]
986	4	[14, 2, 2]	434, 14, 2, 2, 2]
1067	1	[28, 2, 2]	$364,14,2,2,2]$
1986	2	[14, 2, 2]	[2198, 14, 2]
2001	2	[14, 2, 2]	$14,14,14,2,2]$
2273	4	[154]	[2926, 7]
2274	2	[14, 2, 2]	[1022, 14, 2, 2, 2]
2334	2	[14, 2, 2]	686, 14, 14]
2355	1	[14, 2, 2, 2]	$[3206, ~ 14, ~ 2, ~ 2] ~$
2413	2	[14, 2]	$70, \quad 70,2,2]$
2498	1	[84, 2]	420, 210, 3]
2642	4	[56, 2]	7448, 14]
2838	2	[14, 2, 2, 2]	$686,14,2,2,2,2]$
3002	2	[42, 2, 2]	882, 14, 14]
3106	2	[28, 2]	[2044, 14, 2, 2]
3323	2	[98, 2]	[1274, 182]
3603	1	[28, 2, 2]	$[13132,14,2]$
3706	4	[14, 2, 2]	[7322, 14, 2]
3722	4	70, 2]	490, 14, 14, 2]
4234	4	[14, 2, 2]	[2366, 14, 2, 2, 2]
4373	4	70]	[7210, 7]
4574	1	84, 2]	[35028, 14]
4987	2	70, 2]	[38710, 14]

Example. In the case $p=7$, there are 28 square free positive integers d in the range $0 \leq d \leq$ 5000 for which a unit $\varepsilon_{0}^{m} \in \mathbf{Q}(\sqrt{d}) \backslash \mathbf{Q}(\sqrt{d})^{7}$ (for some m) satisfies the condition $\operatorname{Tr}\left(\varepsilon_{0}^{m}\right) \equiv 0\left(\bmod 7^{2}\right)$ and the class number of $\mathbf{Q}(\sqrt{-7 d})$ is divisible by 7 , where ε_{0} is a fundamental unit of $\mathbf{Q}(\sqrt{d})$. In Table I, we list all of these $28 d$'s with the structures of the ideal class groups of $\mathbf{Q}(\sqrt{-7 d})$ and of M. We denote an abelian group $C_{n_{1}} \times C_{n_{2}} \times \cdots \times C_{n_{r}}$ by [$n_{1}, n_{2}, \ldots, n_{r}$], where C_{n} denote a cyclic group of order n.

References

[He] Herz, C. S.: Construction of class fields. Seminar on Complex Multiplication: Seminar held at the Institute for Advanced Study, Princeton, N.J., 1957-58. (eds. Borel, A., Chowla, S., Herz, C. S., Iwasawa, K., and Serre, J.-P.). Lecture Notes in Math., no. 21, Springer, Berlin-Heidelberg-New York, pp. VII-1-VII-21 (1966).
[Im-Ki] Imaoka, M., and Kishi, Y.: Spiegelung Relations Between Dihedral Extensions and Frobenius Extensions. Tokyo Metropolitan Univ. Math. Preprint Series, no. 12, (2000).
[Ka] Katayama, S.: On fundamental units of real quadratic fields with norm +1 . Proc. Japan Acad., 68A, 18-20 (1992).
[Nag] Nagel, Tr.: Über die Klassenzahl imaginärquadratischer Zahlköper. Abh. Math. Sem. Univ. Hamburg, 1, 140-150 (1922).
[Nak] Nakano, S.: On the construction of certain number fields. Tokyo J. Math., 6, 389-395 (1983).
[Pa] Parry, C. J.: Real quadratic fields with class numbers divisible by five. Math. Comp., 32, 12611270 (1978).
[Sas] Sase, M.: On a family of quadratic fields whose class numbers are divisible by five. Proc. Japan Acad., 74A, 120-123 (1998).
[Sat] Satgé, M.: Corps résolubles et divisibilité de nombres de classes d'idéaux. Enseign. Math.(2), 25, 165-188 (1979).
[Ue] Uehara, T.: On class numbers of cyclic quartic fields. Pacific J. Math., 122, 251-255 (1986).

[^0]: 2000 Mathematics Subject Classification. Primary 11R29; Secondary 11R20, 12F10.

