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The first, the second and the fourth

Painlevé transcendents are of finite order
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Abstract: We show that every solution of the first Painlevé equation has the finite growth
order. The second and the fourth Painlevé equations have the same property.
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1. Introduction. Consider the first
Painlevé equation

w′′ = 6w2 + z(I)

(′= d/dz). Every solution of (I) is meromorphic in
C ([2], [3], for [3] see [6]). In this paper, we prove
the following:

Theorem 1.1. Let w(z) be an arbitrary mero-
morphic solution of (I). Then, T (r, w) = O(rC),
where C is some positive number independent of
w(z).

For the notation in the value distribution theory
such as m(r, f), N(r, f), T (r, f), S(r, f), the reader
may consult [4]. In the proof, Lemma 2.1 and the
auxiliary function given by (2.5) play essential roles.
The second and the fourth Painlevé transcendents
have the same property (Theorem 4.1). We remark
that the constant C in Theorem 1.1 can be replaced
by 5/2, which is proved by another method ([5]).

2. Lemmas. In what follows, w(z) denotes
an arbitrary meromorphic solution of (I), and

θ = 2−4, D0 = {z | |z| ≥ 5}.

We begin with the following lemma, whose proof is
a modification of M. Hukuhara’s argument ([3], [6]).

Lemma 2.1. Suppose that, for a ∈ D0, |w(a)|
≤ θ2|a|1/2/6. Then,
(i) w(z) is analytic and bounded for |z − a| < δa,
(ii) |w(z)| ≥ θ2|a|1/2/5 for (5/6)δa ≤ |z − a| ≤ δa,
where δa is a positive number such that

θ|a|−1/4 min
{

1,
θ|a|3/4

|w′(a)|

}
< δa ≤ 3θ|a|−1/4.(2.1)

Proof. In (I), put z−a = ρt, ρ = a−1/4, w(z) =
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w(a + ρt) = θa1/2W (t). Then,

Ẅ (t) = 6θW (t)2 + θ−1(1 + ρ5t)
(
˙ =

d

dt

)
.

Integrating both sides twice, we have

W (t) = W (0) + Ẇ (0)t +
θ−1t2

2
+ g(t),(2.2)

where

W (0) = θ−1a−1/2w(a), Ẇ (0) = θ−1a−3/4w′(a),

g(t) =
θ−1ρ5t3

6
+ 6θ

∫ t

0

∫ τ

0

W (s)2dsdτ.

(1) Case |Ẇ (0)| ≤ 1. We put

η0 = sup{η | M(η) ≤ 8θ},

where M(η) = max{|W (t)|
∣∣ |t| ≤ η}. Then, η0 > 0,

because |W (0)| = θ−1|a|−1/2|w(a)| ≤ θ/6. Suppose
that η0 < 3θ. Observing that, for |t| ≤ η0 and for
|a| ≥ 5,

|g(t)|(2.3)

≤ θ−1|ρ|5|t|3

6
+ 6θ

∫ t

0

∫ τ

0

|W (s)|2|ds||dτ |

≤ θ−1|ρ|5(3θ)3

6
+

6θ(8θ)2(3θ)2

2
<

θ

4
,

we obtain from (2.2) that

|W (t)| ≤ |W (0)|+ |t|+ θ−1|t|2

2
+

θ

4
< 7.92θ(2.4)

for |t| ≤ η0, which contradicts the supposition.
Hence η0 ≥ 3θ, and (2.3) is valid for |t| ≤ 3θ. Fur-
thermore, for 2.5θ ≤ |t| ≤ 3θ,

|W (t)| ≥ θ−1|t|2

2
− |W (0)| − |t| − |g(t)|

≥
(2.52

2
− 1

6
− 2.5− 1

4

)
θ >

θ

5
.
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Going back to the original variables, we obtain (i)
and (ii) with δa = 3θ|a|−1/4.

(2) Case |Ẇ (0)| = κ > 1. Putting

η1 = sup{η | M(η) ≤ 5θ}

and supposing η1 < (2/κ)θ, we obtain |g(t)| < θ/24
and |W (t)| ≤ |W (0)|+κ|t|+ θ−1|t|2/2+ θ/24 < 4.3θ

for |t| ≤ η1, instead of (2.3) and (2.4). This implies
η1 ≥ (2/κ)θ, and hence |g(t)| < θ/24 for |t| ≤ (2/κ)θ.
Furthermore, for (0.8/κ)θ ≤ |t| ≤ (1.2/κ)θ,

|W (t)| ≥ κ|t| − θ−1|t|2

2
− |W (0)| − |g(t)|

≥
(
0.8− 0.82

2
− 1

6
− 1

24

)
θ >

θ

5
.

Thus we obtain (i) and (ii) with

δa =
1.2θ|a|−1/4

κ
=

1.2θ|a|−1/4 · θ|a|3/4

|w′(a)|
,

which completes the proof.
Remark. In Lemma 2.1, since |a| ≥ 5, the

property (ii) can be replaced by
(ii′) |w(z)| ≥ θ2|z|1/2/5.5 for (5/6)δa ≤ |z − a| ≤ δa.

Lemma 2.2. There exists a curve Γ0 : z =
φ(x), 0 ≤ x < +∞ such that
(1) x is the length of Γ0 from φ(0) to φ(x);
(2) |φ(x)| is monotone increasing and |φ(x)| → +∞
as x → +∞;
(3) |dz| ≤ (6/

√
11)d|z| along Γ0;

(4) |w(z)| ≥ 2−11|z|1/2 along Γ0.
Proof. Consider the ray R0 (⊂ R): z ≥ 5.

Start from z = 5, and proceed along R0. Sup-
pose that a point a ∈ R0, a ≥ 5 satisfies |w(a)| ≤
θ2|a|1/2/6 and |w(z)| > θ2|z|1/2/6 for 5 ≤ z < a.
Draw the semi-circle Ca: |z − a| = δa, Re z ≥ 0
(cf. Lemma 2.1) which crosses R at a− and a+

(a− < a+). Take points a∗−, a∗+ (Re a∗− < Re a∗+)
on the semi-circle C∗

a : |z − a| = (5/6)δa, Re z ≥ 0 in
such a way that the segments [a−, a∗−] and [a∗+, a+]
come in contact with C∗

a . Let γ(a) be a curve which
consists of the segments [a−, a∗−], [a∗+, a+] and the
arc (a∗−a∗+)̃ ⊂ C∗

a . Replacing the segment [a−, a+]
by γ(a), we get the curve Γ1 = (R0 \ [a−, a+])∪γ(a).
By Lemma 2.1 and Remark, and by a geometric con-
sideration, we have, on Γ1, |w(z)| ≥ θ2|z|1/2/6 >

2−11|z|1/2 and |dz| ≤ (6/
√

11)d|z| if Re z ≤ a+.
Start again from z = a+. Suppose that we first meet
a point b ∈ Γ1, b > a+ such that |w(b)| = θ2|b|1/2/6.
By the same argument as above, we obtain the curve
γ(b). Then it crosses Γ1 at b′−, b+ (Im b′− ≥ 0,

b+ ∈ R, Re b′− < b+). Replacing the part of Γ1

from b′− to b+ by that of γ(b) from b′− to b+, we
get the path Γ2. On it, the inequalities in (3) and
(4) are valid, if Re z ≤ b+. Repeat this procedure.
For every l ≥ 5, the modification of the part such
that l ≤ Re z ≤ l + 1 can be done by repeating
this procedure finitely many times. The reason is
stated as follows. If not so, there exists a sequence
{a(ν)}∞ν=0 ⊂ [l, l + 1] ⊂ R satisfying

∑∞
ν=0 δa(ν) ≤ 1

and |w(a(ν))| ≤ θ2(l + 1)1/2/6. Hence, by (2.1),
we may choose a subsequence {a(νj)}∞j=0 satisfy-
ing a(νj) → a∗ ∈ [l, l + 1], w(a(νj)) → w∗ 6= ∞,
w′(a(νj)) → ∞, as j → ∞. Then w(a∗) = w∗ 6= ∞,
w′(a∗) = ∞, which is a contradiction. Therefore we
get the curve Γ0 with the desired properties.

Modifying a circle in a similar way, we obtain
Lemma 2.3. For an arbitrary pole z = σ of

w(z) such that |σ| > 10, there exists a closed Jordan
curve Jσ with the properties:
(1) σ ∈ Jσ;
(2) Jσ ⊂ {z | |σ| ≤ |z| ≤ |σ|+ 1};
(3) |dz| ≤ (6/

√
11)d(|σ| arg z) along Jσ;

(4) |w(z)| ≥ 2−11|z|1/2 along Jσ.
Consider the auxiliary function

Φ(z) = w′(z)2 +
w′(z)
w(z)

− 4w(z)3 − 2zw(z).(2.5)

A straight-forward computation yields

Φ′(z) +
Φ(z)
w(z)2

= − z

w(z)
+

w′(z)
w(z)3

.

Solving this we have
Lemma 2.4. Let γ(z0, z) be a path starting

from z0 and ending at z, and γ(z0, t) the part of
γ(z0, z) from z0 to t (∈ γ(z0, z)). If w(t) 6= 0 on
γ(z0, z), then

Φ(z) = E(z0, z)−1

[
Φ(z0)−

E(z0, z)
2w(z)2

+
1

2w(z0)2
−

∫
γ(z0,z)

E(z0, t)
2w(t)4

(
2tw(t)3 − 1

)
dt

]
,

where E(z0, t) = exp(
∫

γ(z0,t)
w(τ)−2dτ).

For an arbitrary pole z = σ, |σ| > 10, consider
the disk U(σ) = {z | |z − σ| < η(σ)} with η(σ) =
sup

{
η

∣∣ |w(z)| > 2|z|1/2 in |z−σ| < η (≤ 1)
}
. Then

Lemma 2.5. In U(σ), |Φ(z)| ≤ K0|z|∆. Here
K0 is independent of σ, and ∆ (≥ 3/2) is indepen-
dent of w(z) and σ.

Proof. For z ∈ Γ0, denote by Γ0(z) the part of
Γ0 from the starting point c0 to z. By Lemma 2.2,
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|E(c0, z)±1| ≤ exp
(∫

Γ0(z)

|dt|
|w(t)|2

)
≤ exp

(
6 · 222

√
11

∫ |z|

|c0|

d|t|
|t|

)
= O(z∆′

),

∆′ = 3 · 223/
√

11. Hence, by Lemmas 2.2 and 2.4,
for zσ ∈ Γ0 ∩ Jσ, we have Φ(zσ) = O(z2∆′+3/2

σ ).
Since |σ| ≤ |zσ| ≤ |σ|+ 1, by Lemma 2.3, E(zσ, z) =
O(1) along the curve Jσ (3 zσ, z). Observing that
Φ(zσ) = O(z2∆′+3/2

σ ) and using Lemmas 2.3 and 2.4,
we have Φ(σ) = O(σ2∆′+3/2). Applying Lemma 2.4
with γ(z0, z) = [σ, z], z ∈ U(σ), we derive the con-
clusion.

3. Proof of Theorem 1.1. For an arbitrary
pole z = σ of w(z), by Lemma 2.5, we have |Φ(z)| ≤
K0|z|∆ for z ∈ U(σ). Put w(z) = u(z)−2, z = σ +
σ−∆/6s in (2.5). Then v(s) = u(σ+σ−∆/6s) satisfies

dv

ds
(s) = σ−∆/6

(
1 + h(s, v(s))

)
,(3.1)

|h(s, v(s))| < 1
2
, v(0) = 0,

as long as ∣∣(σ + σ−∆/6s)∆/6
∣∣|v(s)| < ε0,(3.2)

where the branch of u(z) is taken so that u′(σ) =
σ∆/6(dv/ds)(0) = 1, and ε0 = ε0(K0) is a sufficiently
small positive constant independent of σ. Note that
(3.2) implies z = σ + σ−∆/6s ∈ U(σ). Put η∗ =
sup{η | (3.2) is valid for |s| < η}, and suppose that
η∗ < ε0/4. Then, integrating (3.1), we derive

|s|
2
≤ |σ∆/6| |v(s)| ≤ 3|s|

2
≤ 3ε0

8
(3.3)

for |s| ≤ η∗ (< ε0/4), which implies∣∣(σ + σ−∆/6s)∆/6
∣∣ |v(s)|

≤ |σ∆/6||v(s)|
(
1 +

1
M0

)∆/6

≤ ε0

2

for |s| ≤ η∗ and for |σ| ≥ M0, where M0 is suffi-
ciently large. In case |σ| ≥ M0, this contradicts the
definition of η∗, and hence η∗ ≥ ε0/4. Therefore, if
|σ| ≥ M0, then (3.3) is valid for |s| < ε0/4, and w(z)
is analytic for 0 < |z−σ| < (ε0/4)|σ|−∆/6. By a well-
known argument [1, §4.6], the number of the poles of
w(z) in the disk |z| < r does not exceed O(r2+∆/3).
Combining this fact with m(r, w) = S(r, w) (cf.
[4, Lemma 2.4.2] and [4, Lemma 1.1.1]), we get
T (r, w) = m(r, w) + N(r, w) = O(r2+∆/3), which
completes the proof.

4. The second and the fourth Painlevé
equations. The method above is also applicable
to the second and the fourth Painlevé equations

w′′ = 2w3 + zw + α,(II)

ww′′ =
(w′)2

2
+

3w4

2
+4zw3 + 2(z2 − α)w2 + β,

(IV)

α, β ∈ C. For (II), instead of (2.5), we consider the
auxiliary function

ΦII(z) = w′(z)2 +
w′(z)

w(z)− θ1z1/2

− w(z)4 − zw(z)2 − 2αw(z).

Putting z − a = a−1/2t, w(z) = θ1a
1/2W (t), we

show a lemma corresponding to Lemma 2.1, and
we choose paths analogous to Γ0 and Jσ on which
|w(z)− θ1z

1/2| ≥ c1|z|1/2. For (IV), we take

ΦIV(z) =
w′(z)2

w(z)
+

4w′(z)
w(z)− θ2z

− w(z)3

− 4zw(z)2 − 4(z2 − α)w(z) +
2β

w(z)
.

Using the change of variables z − a = a−1t, w(z) =
θ2aW (t), we also choose paths corresponding to Γ0

and Jσ on which |w(z)−θ2z| ≥ c2|z|. Here θj and cj

(j = 1, 2) are suitably chosen small positive numbers.
These auxiliary functions satisfy

Φ′II(z) +
ΦII(z)

(w(z)− θ1z1/2)2

=
w′(z)

(w(z)− θ1z1/2)3

(
1− θ2

1

2
+

θ1

2
z−1/2w(z)

)
− 1

(w(z)− θ1z1/2)2

(
θ2
1zw(z)2 + θ1z

3/2w(z)

+ αw(z) + θ1αz1/2
)
,

and

Φ′IV(z) +
2(w(z) + θ2z)
(w(z)− θ2z)2

ΦIV(z)

=
4w′(z)

(w(z)− θ2z)3
(
(2 + θ2)w(z) + (2− θ2)θ2z

)
− 4

(w(z)− θ2z)2

(
θ2
2z

2w(z)2 + 2θ2z
2w(z)

× (w(z) + θ2z) + 4θ2(z2 − α)zw(z)− 2β

)
,

respectively. By an argument analogous to that in
Section 3, we have
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Theorem 4.1. Let w(z) be an arbitrary mero-
morphic solution of (II) (resp. (IV)). Then T (r, w) =
O(rC′

) (resp. O(rC′′
)), where C ′ (resp. C ′′) is some

positive number independent of w(z).
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