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On arithmetic infinite graphs
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Abstract: We compute explicitly the Selberg trace formula for principal congruence sub-
groups Γ of PGL(2,Fq[t]), which is the modular group in positive characteristic cases. It is known
that Γ\X is an infinite Ramanujan diagram, where X is the q + 1-regular tres. We express the
Selberg zeta function for Γ as the determinant of the adjacency operator which is composed of
both discrete and continuous spectra. They are rational functions in q−s. We also discuss the
limit distribution of eigenvalues of Γ\X as the level tends to infinity.
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1. Introduction. The Selberg trace formula
and the Selberg zeta function have been well-
explored originally for PSL(2,R). Let Γ be a co-
finite discrete subgroup of PSL(2,R), which acts
on the upper half-plane H, then it is known that
the Selberg zeta function ZΓ(s) attached to Γ is ex-
pressed as the determinant of the Laplacian. One
of the purposes of this note is to give a new explicit
example of the Selberg trace formula and the Sel-
berg zeta function. We consider the case of func-
tion fields and treat principal congruence subgroups
Γ(A)(A ∈ Fq[t]) of PGL(2,Fq[t]), which is an ana-
log of PSL(2,Z) in view of number theory. They act
on the associated Bruhat-Tits tree X, so instead of
non-compact arithmetic manifolds the infinite quo-
tient graphs appear. In the case of finite graphs the
trace formulas and Ihara-Selberg zeta functions are
well investigated. Our results can be regarded as the
first ones in the case of infinite graphs, which gener-
alize those works.

Ramanujan graphs are defined as k-regular fi-
nite graphs whose nontrivial eigenvalues of adjacency
operator have absolute values bounded by 2

√
k − 1.

But it is a hard task to determine the eigenvalues
for large graphs. The first construction of a fam-
ily of Ramanujan graphs whose sizes tend to infinity
are made by Lubotzky, Phillips, and Sarnak and in-
dependently Margulis. Morgenstern introduced the
notation of Ramanujan diagrams, which is a general-
ization of Ramanujan graphs. In [M2] he showed the
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quotient graphs Γ(A)\X are Ramanujan diagrams
by using the Ramanujan conjecture proved by Drin-
feld. To date they are the only example of Ramanu-
jan diagrams which are not finite graphs. In Section
4, we investigate the limit distribution of eigenvalues
of these graphs Γ(A)\X when the level degA tends
to infinity.

In Section 2, we prepare some notations and pre-
liminaries such as the Bruhat-Tits tree X and adja-
cency operator T on it. In Section 3, we give the ex-
plicit trace formula and the determinant expression
of the Selberg zeta function. The detailed version
will appear in forthcoming papers.

2. Preliminaries. Let Fq be the finite field
with q elements and Fq[t] be the ring of polynomi-
als in t over Fq. Let k∞ be the completion at in-
finity of the rational function field k = Fq(t) and
r∞ be the ring of its local integers. Then k∞ is
the field Fq((t−1)) of Laurent series in uniformizer
t−1 over Fq, and r∞ is the ring Fq[[t−1]] of Tay-
lor series in t−1 over Fq. If a element a in k∞ is
written as

∑∞
i=n ait

−i(an 6= 0), then the norm |a|∞
of a is q−n. Throughout we put G = PGL(2, k∞)
and K = PGL(2, r∞). As is described in [Se1,
II.1.1], we can endow G/K with the structure of the
q + 1 regular tree X. The tree X has a natural dis-
tance d, namely, if u and v are adjacent in X we let
d(u, v) = 1. We write V (X) for the set of vertices of
this tree X, i.e., cosets of G/K, and E(X) for the
set of edges of X. The group G acts on the tree X
as a group of automorphisms. This action of G on
X can be extended to the boundary ∂X of X, the
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element of which is a equivalence class of half-lines
with two half-lines being equivalent if they differ at
most in a finite graph.

Let Γ be a subgroup of G which acts without
inversions on X, then it naturally gives rise to a quo-
tient graph Γ\X. If Γ is a discrete subgroup of G of
finite covolume, Lubotzky [Lu, Theorem 6.1.] shows
that the quotient graph Γ\X is the union of a finite
graph F0 together with finitely many infinite half
lines. For example, when Γ(1) := PGL(2,Fq[t]) the
quotient graph Γ(1)\X is isomorphic to a half line
[Se1, II.1.6]. The quotient graph Γ\X can be made
into an atomic measure space induced from a Haar
measure of G, which we normalize so that the volume
of K is 1. Denote the stabilizer of v ∈ V (Γ\X) and
e ∈ E(Γ\X) in Γ by Γv and Γe respectively. Then
we see that a vertex v ∈ V (Γ\X) have the measure
m(v) = |Γv|−1 (see [Se1, II.1.5]). For later use we put
m(e) = |Γe|−1, where e ∈ E(Γ\X). In this paper we
consider C-valued functions defined on vertices.

Now we define a natural operator on X, which
we call the adjacency operator, by

(Tf)(v) :=
∑

d(v,u)=1

f(u) (f : V (X) → C).(1)

It induces an operator on functions which satisfies
f(γg) = f(g) for all γ ∈ Γ and g ∈ V (X), that
is, just functions on the quotient graph Γ\X. The
induced operator can be represented as

(Tf)(v) =
∑

e=(v,u)∈E(Γ\X)

m(e)
m(v)

f(u)

(f : V (Γ\X) → C).

More generally, we define the operator Tm(m = 0, 1,
2, . . .), which average functions on V (X) at distance
m:

(Tmf)(v) :=
∑

d(v,u)=m

f(u) (f : V (X) → C).(2)

Then it can be seen that the following recursive re-
lations hold:

T 2
1 = T2 + (q + 1)T0

T1Tm = Tm+1 + qTm−1 (m ≥ 2).

These relations yield the following identity:
∞∑

m=0

Tmu
m =

1− u2

1− T1u+ qu2
,(3)

where u is an indeterminate.

3. Trace formulas and Selberg zeta func-
tions. In the following, we let q be an odd prime
power and Γ be a principal congruence subgroup of
G:

Γ(A) = {γ ∈ PGL(2,Fq[t])|γ ≡ I (mod A)}
(A ∈ Fq[t]).

We also assume degA = a ≥ 1. Then the quotient
graph Γ\X is an infinite graph, so that there will
be continuous spectra as well as discrete spectra of
T . We will define the Eisenstein series for each cusp.
Here let κ1, . . . , κµ be a complete set of inequivalent
cusps for Γ. Let Γκi

be the stabilizer in Γ of κi and
take an element κ̃i ∈ G such that κ̃i∞ = κi. Then
the Eisenstein series for κi is defined by

Ei(g, s) :=
∑

γ∈Γκi
\Γ

ψs(κ̃−1
i γg)

(g ∈ G/K,Re(s) > 1),

where ψs(g) := |det g|s∞h ((0 1)g)−2s and h ((x y))
:= sup{|x|∞, |y|∞}.

The Eisenstein series Ei(g, s) is invariant under
Γ, so it can be expanded as a Fourier series at each
cusp κj . In the case of principal congruence groups,
Li [L1] obtains an explicit form of the Fourier series
in terms of the L-functions associated to the charac-
ters χ on Fq[t] mod A. The constant terms of the
Fourier series of Ei(g, s) at cusps κj define the µ× µ

matrix Φ(s) which is called the scattering matrix of
Γ. Its determinant ϕ(s) := det Φ(s) is called the
scattering determinant of Γ. Then Φ(s) satisfies the
functional equation Φ(s) = Φ(1 − s). By the above
computations of [L1] we see that ϕ(s) is a rational
function in q2s, so we put

ϕ(s) = c
(q2s − qa1) · · · (q2s − qam)
(q2s − qb1) · · · (q2s − qbn)

,(1)

where c, aj , bj are constants and we assume that the
right hand side is written to be irreducible. We find
that the continuous spectrum are furnished by Eisen-
stein series for each cusp and are parametrized by the
interval [−2

√
q, 2

√
q]. The explicit trace formula for

Γ can be found in [N1].
Theorem 3.1 [N1]. Let PΓ denote the set of

primitive hyperbolic conjugacy classes of Γ and M

be the number of discrete spectra of T for Γ\X.
For {P} ∈ PΓ, we put N(P ) = sup{|λi|2∞ | λi is
an eigenvalue of the matrix P} and let degP :=
logq N(P ). Assume that the sequence c(n)∈C(n ∈
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Z) satisfies c(n) = c(−n) and
∑

n∈Z q
|n|/2|c(n)| <

∞. Then we have the following formula:
M∑

n=1

h(rn)(2)

= vol(Γ\X)k(0)

+
∑

{P}∈PΓ

∞∑
l=1

degP
q(l deg P )/2

c(l degP )

+
(
µ− TrΦ

(
1
2

))(
1
2
c(0) +

∞∑
m=1

c(2m)

)

+
1
4π

∫ π/ log q

−π/ log q

h(r)
ϕ
′

ϕ

(
1
2

+ ir

)
dr

−µ
(
a+

1
q − 1

)
c(0).

Here the functions h(·), k(·) are determined by c(·)
via the Selberg transform.

We now turn to investigate the Selberg zeta
function for Γ, which is defined by

ZΓ(s) :=
∏

{P}Γ∈PΓ

(
1−N(P )−s

)−1
.(3)

We use the trace formula (2) by plugging the follow-
ing test function c(n)

c(n) =
{
−(log q)q−|n|(s−1/2) n 6= 0
0 n = 0,

where s ∈ C is fixed with Re(s) > 1. Now we define
our determinant of T associated to Γ\X by

det(T, s) := detD(T, s) · detC(T, s),

where

detD(T, s) := detD(1− Tq−s + q1−2s)

=
M∏

n=1

(1− λnq
−s + q1−2s),

detC(T, s) :=
∏
|bj |<1

(1− q−2s+1bj)

·
∏
|bj |>1

(1− q−2s+1b−1
j )−1,

and bj is given by (1). Then we have the next result.
Theorem 3.2 [N1]. The Selberg zeta function

ZΓ(s) attached to Γ can be expressed by the deter-
minant of T :

ZΓ(s)−1 = (1− q−2s)χ(1− q−2s+1)−ρdet(T, s),(4)

where χ := vol(Γ\X)(q − 1)/2, ρ := (1/2)Tr(Iµ −

Φ(1/2)) and Iµ is the µ× µ-identity matrix.
4. The distribution of eigenvalues. As

described in Introduction, by using the Ramanu-
jan conjecture proved by Drinfeld, Morgenstern [M2]
shows that any nontrivial discrete spectrum λ of T
on Γ\X satisfies |λ| ≤ 2

√
q. We put a normalized

operator T
′

= T/
√
q and let D

′
be the set of the

nontrivial discrete spectra of T
′
. Every element λ

′

of D
′

satisfies |λ′ | ≤ 2. Then we consider certain
limit distribution of eigenvalues of T

′
on Γ\X.

First we prepare two probability measures on
Ω = [−2, 2]. One is the Sato-Tate measure or Wigner
semi-circle:

µ∞(x) =
1
π

√
1− x2

4
dx.

The other is defined for a real number q(> 1) by

µq(x) =
q + 1

(q1/2 + q−1/2)2 − x2
µ∞(x).

The Chebychev polynomials of the second kind
Xm(x) (m = 0, 1, 2, . . .) are known to be orthogo-
nal with respect to µ∞(x) and they satisfy

∞∑
m=0

Xm(x)um =
1

1− xu+ u2
,

where u is an indeterminate. Next we define the
polynomials Xm,q(x)(m = 0, 1, 2, . . .) by

Xm,q(x) := Xm(x)− q−1Xm−2(x),

where we let Xm(x) := 0 for m < 0. Then we have∫
Ω

Xm,q(x)dµq(x) =
{

1 (m = 0)
0 (m > 0)

(1)

and
∞∑

m=0

Xm,q(x)um =
1− u2/q

1− xu+ u2
.(2)

Now we normalize the operator Tm in (2) as T
′

m =
Tm/q

m/2. Then from (3) we have
∞∑

m=0

T
′

mu
m =

1− u2/q

1− T ′u+ u2
.(3)

Hence (2) and (3) yield

T
′

m = Xm,q(T
′
).(4)

After these preparations, we can describe the
following result. For the details of the proof and
other investigations, see [N2].
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Theorem 4.1 [N2]. Let an odd prime power q
be fixed. Then for any {Ai}(i = 0, 1, 2, . . . ;Ai ∈
Fq[t]) such that degAi → ∞ as i → ∞, the dis-
crete spectra D

′

i of T
′

= T/
√
q on Γ(Ai)\X are

equidistributed with respect to the measure µq(x)
on Ω = [−2, 2]. That is, let C(Ω) be the space of
R-valued continuous functions for Ω, then for any
f(x) ∈ C(Ω) the following holds:

lim
i→∞

1
|D′

i|
∑

λ′∈D
′
i

f(λ
′
) =

∫
Ω

f(x)dµq(x).(5)

Sketch of the proof. The space spanned by the
set of polynomials {Xm,q}(m = 0, 1, 2, . . .) is dense
in C(Ω), so it suffices to check that f = Xm,q satisfies
(5) for each m. We write TrXm,q(T

′
) the sum of the

discrete spectra of T ′m for Γ(A) \X, then by (4) we
have TrXm,q(T

′
) = TrT

′

m. Let Nm be defined by

Nm :=
∑

degP |m
P∈PΓ

degP,

then the Selberg zeta function (3) can be described
as

ZΓ(u) = exp

( ∞∑
m=1

Nm

m
um

)
,(6)

where u = q−s. Now taking the logarithmic deriva-
tive of (4) and (6) in u, by (3) we have the formula
which represents TrTm in terms of {Nm}.

This formula contains the terms of the contri-
bution of the scattering determinant ϕ(s). Taking
into account that poles of the scattering determi-
nant ϕ(s) correspond to zeros of certain product of
Dirichlet L-functions mod A, it is possible to es-
timate these terms. When degA → ∞ we have
Nm → 0 for each m and by the trace formula (2)
we have |D′ | ∼ vol(Γ(A)\X). Combing the above
facts, as degA→∞, (1/|D′ |)TrT

′

m tends to zero for
each m(6= 0), and hence by (1) we have the assertion.
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