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On the Diophantine equation z(z +1)---(z +n) + 1 = y?
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Abstract:

Let IN denote the set of natural numbers {1,2,3,...}. n being an odd natural

number, we consider the Diophantine equation as mentioned in the title and solve it completely
for n < 15, i.e. find all (x,y) € N? satisfying this equation.

Key word: Diophantine equation.

1. Introduction. It was shown by Erdds
and Serfridge [1] that the product of consecutive in-
tegers is never a power, so that the Diophantine
equation x(x + 1)---(x +n) = y? has no solution,
but we do not know if the Diophantine equation
x(x+1)---(x +n) +1=1y? has hitherto been ever
treated. We shall consider it in this paper for the case
n is odd and solve it completely for the case n < 15.
We shall put F,(z) = x(z+1)---(x +n)+ 1. This
is a monic polynomial with integral coefficients of an
even degree n + 1. Put m = (n+ 1)/2. As solutions
of a Diophantine equation in x,y, we shall always
mean (z,y) € N? satisfying it. We have obtained
the following

Theorem.

(1) Fy(x) = y? has no solution.
(2) Fs(x) = y? has an infinite number of solutions:

x can take any element x of N, y = 22+ 3z + 1.
(3) Fs(x) = y? has only one solution (v,y) =

(2,71).

(4) F,(x) = y* with odd n has no solution for 7 <
n < 15.
Remark 1. We should like to conjecture that

F,(z) = y? with odd n has no solution also for n >
17, but we could not yet prove it.

Remark 2. Our proof of this theorem for the
case n > 5 is based on a principle in solving Diophan-
tine equations of the form F(z) = y?, where F(x) is
a monic integral polynomial of an even degree, which
will be explained in the following paragraph.

2. A principle. Let F(z) be a monic inte-
gral polynomial of an even degree 2m. To find solu-
tions (z,y) € N2 of F(z) = y?, one can proceed as
follows:
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Put F(z) = 2™ 4+ a12°™ !t + - + ag,, € Z[z].
We can obtain a monic polynomial G(z) = 2™ +
bix™ ' + ... + b, € Q[r] and another polynomial
R(z) € Qz] whose degree deg R < m, such that
F(r) = (G(x))? + R(z) (uniquely by the method of
indeterminate coefficients). In fact, the denomina-
tors of the coefficients of G, R are the powers of 2.
We shall denote by e the inverse number of the max-
imum of these denominators when G(x) ¢ Z[z] and
put € = 1 when G(z) € Z[z].

Put now for x € N

vy =[G vhen Gia) ¢ 200
| G(#)—1 when G(z) € Z[2],

so that Y : Z — Z. Notice that e < 1 ore =1
according as G(x) & Z[z] or € Z[z], and in the first
case

e<Gz)-Y(@x)<l--=

If we could prove the existence of some xy € N,
such that

(%) (Y(2))* < F(z) < (Y(2) +1)°

holds for all x > xq, then for any possible solution
(x,y) of F(z) = y?, we should have z < o, and
these = could be found by a computer (if z( is not
so large). The existence of number z( for F' = F,,,
5 < n < 15 will be shown in the following paragraph
for individual cases.

3. Proof of the theorem. We shall omit
the proof of (1), (2) which is immediate, and de-
scribe first the proof of (3) in detail.

In that case, we obtain

1 11
G(z) :x3+§x2+?5x+%



No. 2] z(x+1)---

so that £ = 1/16, and
Y(2)<Gx)—e<Gx)+e<Y(z)+1.
By calculation, we have

(G(2) +¢)* = F(a)

_ Ll 2 26, 3
8 64 16 6 =
F(z) — (G(z) —¢)
1 1304

12 41
3 _ 79302 5

8" T 64 327 64
of which the last polynomial has only one root be-
tween 21 and 22 (by Descartes’ rule) so that () holds
for x > 22. The rest of the proof is done by a com-
puter.

The proof of the cases n = 9,11,13 is done in
the same way, the values of € and z( in each case
being as follows:

n 9 11 13
e [1/256 1/2  1/2048
70]20277 88 20606985

(z+mn)+1=1y? 17

In the cases n = 7,15 we obtain G(z) € Z[z],
e = 1. The concrete forms of G(z) in respective cases
are:

o'+ 142° +632° + 982 + 28 ifn="7
2® + 602" + 14902° + 198002° + 151761z*
+ 6715802 + 160918022 + 17412002 + 430016
if n=15
and the values of zy are 4, 1015, respectively.
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