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Fan’s inequalities for vector-valued multifunctions

By Pando Grigorov Georgiev
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Abstract: We present four variants of Fan’s type inequality for vector-valued multifunc-
tions in topological vector spaces with respect to a cone preorder in the target space, when the
functions and the cone possess various kinds of semicontinuity and convexity properties. Using
the classical scalar Fan inequality, we prove directly a two-function result of Simons, which is used
to establish our main tool for proving the presented results.
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1. Introduction. Fan’s inequality is one of
the main tools in the nonlinear analysis. It is equiv-
alent to other main theorems in nonlinear analy-
sis, like Brouwer’s fixed point theorem, Knaster-
Kuratowski-Mazurkiewicz theorem, etc. (see for in-
stance [2]). As an analytical instrument, in many
situations it is more appropriate and applicable than
the other main theorems.

In this paper we show four kinds of vector-
valued Fan’s type inequality for multifunctions. One
of them (Theorem 3.1) generalizes the main result of
Ansari-Yao in [1], namely, the existence result in the
so-called Generalized Vector Equilibrium Problem.
Any of our Theorems 3.1–3.4 implies the classical
Fan inequality, while the main result in [1] does not
imply it in its full generality, but only for continuous
functions. Our proofs are quite different from that
one in [1] and are based on the classical scalar Fan
inequality. More precisely, in the proofs we use a new
result (see Theorem 2.3) which follows from a two-
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function result of Simons [7, Theorem 1.2] (used in [7]
to derive Fan’s inequality), which we prove directly
by Fan’s inequality. For a simple proof of the clas-
sical Fan inequality, based on Brouwer’s fixed point
theorem, we refer to [3] and [8].

Our main tool in this paper (Theorem 2.3) is a
slightly more general form of a two-function result
of Simons [7, Corollary 1.6] and as a consequence of
our results, it implies the classical Fan inequality.

The proofs of the main results (Theorems 3.1–
3.4) use Theorem 2.3 for special scalar functions
possessing semicontinuity and convexity properties,
inherited by the semicontinuity and the convexity
properties of the multifunctions. These proofs will
be published in [4] and elsewhere (Nonlinear Analy-
sis, TMA).

2. Fan’s inequality and a new two-
function result. Firstly we recall the classical
scalar Fan inequality and prove that it implies a two-
function result of Simons (namely [7, Theorem 1.2]),
which is used in the sequel to prove the main tool for
proving the multivalued versions of Fan’s inequality
(Theorems 3.1–3.4).

Theorem 2.1 (Fan). Let X be a nonempty
compact convex subset of a topological vector space
and f : X ×X → R be quasiconcave in its first vari-
able and lower semicontinuous in its second variable.
Then

min
y∈X

sup
x∈X

f(x, y) ≤ sup
x∈X

f(x, x).

Theorem 2.2 (Simons [7, Theorem 1.2]). Let
Z be a nonempty compact convex subset of a topo-
logical vector space, f : Z × Z → R lower semicon-
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tinuous in its second variable, g : Z × Z → R qua-
siconcave in its first variable, and f ≤ g on Z × Z.
Then

min
y∈Z

sup
x∈Z

f(x, y) ≤ sup
z∈Z

g(z, z).

Proof. Define the function co f as a quasicon-
cave envelope of f with respect to the first variable:

co f(x, y) := sup
{

min
i∈{1,...,n}

f(xi, y) :

x =
n∑

i=1

λixi, xi ∈ Z, λi ≥ 0,

n∑
i=1

λi = 1, n ∈ N},

where N is the set of the natural numbers. This
function satisfies the conditions of Fan’s inequality
and applying the latter, we obtain the result.

Now we prove our main tool in this paper. Its
proof is similar to that one of [7, Corollary 1.6].

Theorem 2.3. Let X be a nonempty compact
convex subset of a topological vector space, a : X ×
X → R lower semicontinuous in its second variable,
b : X × X → R quasiconvex in its second variable,
and

x, y ∈ X and a(x, y) > 0⇒ b(y, x) < 0.

Suppose that infx∈X b(x, x) ≥ 0. Then there exists
z ∈ X such that a(x, z) ≤ 0 for all x ∈ X.

Proof. Define

f(x, y) = 1 if a(x, y) > 0 and

f(x, y) = 0 otherwise.

Analogically define

g(x, y) = 1 if b(y, x) < 0 and

g(x, y) = 0 otherwise.

These functions satisfy the conditions of Theorem
2.2, and applying it, we obtain the result.

3. Set-valued Fan’s inequalities. Further
let E and Y be topological vector spaces and F ,
C : E → 2Y two multivalued mappings and let for
every x ∈ E, C(x) be a closed convex cone with
nonempty interior. We introduce two types of cone-
semicontinuity for set-valued mappings, which are
regarded as extensions of the ordinary lower semi-
continuity for real-valued functions; see [5].

Denote B(x) = (intC(x)) ∩ (2S \ S) (an open
base of intC(x)), where S is a neighborhood of 0 in

Y , and define the function

h(k, x, y) = inf{t : y ∈ tk − C(x)},

Note that h(k, x, ·) is positively homogeneous and
subadditive for every fixed x ∈ E and k ∈ intC(x).
Moreover, we use the following notations

h(k, y) = inf{t : y ∈ tk − C},

and B = C∩(2S\S), where C is a convex closed cone
and S is a neighborhood of 0 in Y . Note again that
h(k, ·) is positively homogeneous and subadditive for
every fixed k ∈ intC.

Firstly, we prove some inherited properties from
cone-semicontinuity.

Definition 3.1. Let x̂ ∈ E. The multifunc-
tion F is C(x̂)-upper semicontinuous at x0, if for
every y ∈ C(x̂) ∪ (−C(x̂)) such that F (x0) ⊂ y +
intC(x̂), there exists an open U � x0 such that
F (x) ⊂ y + intC(x̂) for every x ∈ U . If Y is a
Banach space, we shall say that F is (−C)c-upper
semicontinuous at x0, if for any ε > 0 and k ∈ C

such that (k + εBY − C) ∩ F (x0) = ∅, there exists
δ > 0 such that (k + εBY − C) ∩ F (x) = ∅ for every
x ∈ B(x0; δ).

Definition 3.2. Let x̂ ∈ E. The multifunc-
tion F is C(x̂)-lower semicontinuous at x0, if for
every open V such that F (x0) ∩ V �= ∅, there exists
an open U � x0 such that F (x)∩ (V + intC(x̂)) �= ∅
for every x ∈ U . If Y is a Banach space, we shall say
that F is C(x̂)-lower semicontinuous at x0, if for any
ε > 0 and y0 ∈ F (x0) there exists an open U � x0

such that F (x) ∩ (y0 + εBY + C(x̂)) �= ∅ for every
x ∈ U , where BY denotes the open unit ball in Y .

Remark 3.1. In the two definitions above, the
corresponding notions for single-valued function are
equivalent to the ordinary one of lower semiconti-
nuity for real-valued function whenever Y = R and
C = [0,∞). When the cone C(x̂) consists only of the
zero of the space, the notion in Definition 3.2 coin-
cides with that of lower semicontinuous set-valued
mapping. Moreover, it is equivalent to the cone-
lower semicontinuity defined in [5], based on the fact
of V + intC(x̂) = V + C(x̂); see [9, Theorem 2.2].

Lemma 3.1. Suppose that multifunction W :
E → 2Y defined as W (x) = Y \ intC(x) has a
closed graph. If the multifunction F is (−C(x))-
upper semicontinuous at x for each x ∈ E, then the
function ϕ1|X (the restriction of

ϕ1(x) := inf
k∈B(x)

sup
y∈F (x)

h(k, x, y)
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to the set X) is upper semicontinuous, if (F,X) sat-
isfies the property (P);
(P) for every x ∈ X there exists an open U � x such

that the set F (U ∩X) is precompact in Y , that
is, F (U ∩X) is compact.

If the mapping C is constant-valued, then ϕ1 is upper
semicontinuous.

Lemma 3.2. Suppose that the multifunction F
is −C(x)-lower semicontinuous for each x ∈ E and
the multifunction W : E → 2Y defined by W (x) =
Y \ intC(x) has a closed graph. Then the function
ϕ2|X (the restriction of

ϕ2(x) := inf
k∈B(x)

inf
y∈F (x)

h(k, x, y)

to the set X) is upper semicontinuous, if (F,X) sat-
isfies the property (P). If the mapping C is constant-
valued, then ϕ2 is upper semicontinuous.

Lemma 3.3. Suppose that Y is a Banach
space and the multifunction F : E → 2Y is (−C)c-
upper semicontinuous and locally bounded (it means
that for every point x0 ∈ E there exists an open
set U � x0 and p > 0 such that F (x) ⊂ pBY

for every x ∈ U , where BY denotes the open unit
ball in Y ). Suppose that the multifunction C has a
closed graph and the cone C(x) has a compact base
B(x) = (2BY \BY ) ∩ C(x) for every x. Then the
function ϕ2 is lower semicontinuous.

Lemma 3.4. Suppose that Y is a Banach
space and the multifunction F : E → 2Y is C(x)-
lower semicontinuous for each x ∈ E and locally
bounded. Suppose that the multifunction C has a
closed graph and the cone C(x) has a compact base
B(x) = (2BY \ BY ) ∩ C(x) for every x. Then the
function ϕ1 is lower semicontinuous.

Next, we show some inherited properties from
cone-quasiconvexity.

Definition 3.3. A multifunction F : E → 2Y

is called C-quasiconvex, if the set {x ∈ E : F (x) ∩
(a− C) �= ∅} is convex for every a ∈ Y . If −F is
C-quasiconvex, then F is said to be C-quasiconcave,
which is equivalent to (−C)-quasiconvex mapping.

Remark 3.2. The above definition is exactly
that of Ferro type (−1)-quasiconvex mapping in [6,
Definition 3.5].

Definition 3.4. A multifunction F : E → 2Y

is called (in the sense of [6, Definition 3.6])
(a) type-(v) C-properly quasiconvex if for every two

points x1, x2 ∈ X and every l ∈ [0, 1] we have

either F (λx1+(1−λ)x2) ⊂ F (x1)−C or F (λx1+
(1− λ)x2) ⊂ F (x2)− C;

(b) type-(iii) C-properly quasiconvex if for every two
points x1, x2 ∈ X and every λ ∈ [0, 1] we have
either F (x1) ⊂ F (λx1 + (1 − λ)x2) + C or
F (x2) ⊂ F (λx1 + (1− λ)x2) + C.

If −F is type-(v) [resp. type-(iii)] C-properly quasi-
convex, then F is said be type-(v) [resp. type-(iii)] C-
properly quasiconcave, which is equivalent to type-
(v) [resp. type-(iii)] (−C)-properly quasiconvex map-
ping.

Remark 3.3. The convexity of (a) above is ex-
actly that of C-quasiconvex-like multifunction in [1].

Lemma 3.5. If the multifunction F : E → 2Y

is type-(v) C-properly quasiconvex, then the function

ψ1(x) := inf
k∈B

sup
y∈F (x)

h(k, y)

is quasiconvex.
Lemma 3.6. If F is C-quasiconvex, then for

every k ∈ B the function

ψ2(x; k) := inf{h(k, y) : y ∈ F (x)}

is quasiconvex.
Lemma 3.7. If the multifunction F : E → 2Y

is type-(v) C-properly quasiconcave, then the func-
tion ψ2(x; k) is quasiconcave, where k ∈ intC.

Lemma 3.8. If the multifunction F : E → 2Y

is type-(iii) C-properly quasiconcave, then the func-
tion

ψ1(x; k) := sup{h(k, y) : y ∈ F (x)}

is quasiconcave, where k ∈ intC.
Now we state the main results in this paper.

The following theorem is a generalization of that one
in [1]. The main difference between our result and
that one in [1] is the condition (iii), but it allows
us to recover the classical Fan inequality, when Y is
the real line. The result in [1] recovers it only for
continuous functions.

Theorem 3.1. Let K be a nonempty convex
subset of a topological vector space E, Y be a topo-
logical vector space. Let F : K × K → 2Y be a
multifunction. Assume that
(i) C : K → 2Y is a multifunction such that for

every x ∈ K, C(x) is a closed convex cone in Y
with intC(x) �= ∅;

(ii) W : K → 2Y is a multifunction defined as
W (x) = Y \ intC(x), and the graph of W is
closed in K × Y ;



156 P. G. Georgiev and T. Tanaka [Vol. 76(A),

(iii) for every x, y ∈ K, F (·, y) is C(x)-upper semi-
continuous at x with closed values on K and if
the mapping C is not constant-valued, then the
mapping F (·, y) maps the compact subsets of K
into precompact subsets of Y ;

(iv) there exists a multifunction G : K × K → 2Y

such that
(a) for every x ∈ K, G(x, x) �⊂ intC(x),
(b) for every x, y ∈ K, F (x, y) ⊂ intC(x) im-

plies G(x, y) ⊂ intC(x),
(c) G(x, ·) is type-(v) C(x)-properly quasiconcave

on K for every x ∈ X,
(d) G(x, y) is compact, if G(x, y) ⊂ intC(x);

(v) there exists a nonempty compact convex subset
D of K such that for every x ∈ K \ D, there
exists y ∈ D with F (x, y) ⊂ intC(x).
Then, the solutions set

S = {x ∈ K : F (x, y) �⊂ intC(x), for all y ∈ K}

is a nonempty and compact subset of D.
Theorem 3.2. Let K be a nonempty convex

subset of a topological vector space E, Y a topological
vector space, and F : K ×K → 2Y a multifunction.
Assume that
(i) C : K → 2Y is a multifunction such that for

every x ∈ K, C(x) is a closed convex cone in Y
with intC(x) �= ∅;

(ii) W : K → 2Y is a multifunction defined as
W (x) = Y \ intC(x), for every x ∈ K such
that the graph of W is closed in K × Y ;

(iii) for every x, y ∈ K, F (·, y) is C(x)-lower
semicontinuous with closed values on K and if
the mapping C is not constant-valued, then the
mapping F (·, y), for every y ∈ K, maps the
compact subsets of K into precompact subsets
of Y ;

(iv) there exists a multifunction G : K × K → 2Y

such that
(a) for every x ∈ K, G(x, x) ∩ intC(x) = ∅,
(b) for every x, y ∈ K, F (x, y) ∩ intC(x) �= ∅

implies G(x, y) ∩ intC(x) �= ∅,
(c) G(x, ·) is C(x)-quasiconcave on K for every

x ∈ K;
(v) there exists a nonempty compact convex subset

D of K such that for every x ∈ K \ D, there
exists y ∈ D with F (x, y) ∩ intC(x) �= ∅.
Then, the solutions set

S = {x ∈ K : F (x, y) ∩ intC(x) = ∅, for all y ∈ K}

is a nonempty and compact subset of D.

Theorem 3.3. Let K be a nonempty convex
subset of a topological vector space E, Y a Banach
space, and F : K×K → 2Y a multifunction. Assume
that
(i) C : K → 2Y is a multifunction with a closed

graph and C(x) is a closed convex cone with a
compact base B(x) = (2BY \ BY ) ∩ C(x) for
every x;

(ii) for every y ∈ K, F (·, y) is (−C)c-upper semi-
continuous and locally bounded;

(iii) there exists a multifunction G : K × K → 2Y

such that
(a) for every x ∈ K, G(x, x) ∩ (−C(x)) �= ∅,
(b) for every x, y ∈ K, F (x, y) ∩ (−C(x)) = ∅

implies G(x, y) ∩ (−C(x)) = ∅,
(c) G(x, ·) is type-(v) C(x)-properly quasiconcave

on K for every x ∈ K;
(v) there exists a nonempty compact convex subset

D of K such that for every x ∈ K \ D, there
exists y ∈ D with F (x, y) ∩ (−C(x)) = ∅.
Then, the solutions set

S = {x ∈ K : F (x, y) ∩ (−C(x)) �= ∅, for all y ∈ K}

is a nonempty and compact subset of D.
Theorem 3.4. Let K be a nonempty convex

subset of a topological vector space E, Y a Banach
space, and F : K×K → 2Y a multifunction. Assume
that
(i) C : K → 2Y is a multifunction with a closed

graph such that C(x) is a closed convex cone with
a compact base B(x) = (2BY \ BY ) ∩ C(x) for
every x;

(ii) for every x, y ∈ K, F (·, y) is C(x)-lower semi-
continuous and locally bounded ;

(iii) there exists a multifunction G : K × K → 2Y

such that
(a) for every x ∈ K, G(x, x) ⊂ −C(x),
(b) for every x, y ∈ K, F (x, y) �⊂ −C(x) implies

G(x, y) �⊂ −C(x),
(c) G(x, ·) is type-(iii) C(x)-properly quasicon-

cave on K for every x ∈ K;
(iv) there exists a nonempty compact convex subset

D of K such that for every x ∈ K \ D, there
exists y ∈ D with F (x, y) �⊂ −C(x).
Then, the solutions set

S = {x ∈ K : F (x, y) ⊂ −C(x), for all y ∈ K}

is a nonempty and compact subset of D.
As a corollary from any of Theorems 3.1, 3.2, 3.3, and
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3.4, we obtain that Theorem 2.3 implies the scalar
Fan inequality.

Idea of the proofs (for example, of Theorem 3.1):
put

a(x, y) := − inf
k∈B(y)

sup
z∈−F (y,x)

h(k, y, z)

b(x, y) := inf
k∈B(x)

sup
z∈−G(x,y)

h(k, x, z)

and apply Theorem 2.3 for the convex hull of D and
finitely many points of K. In such a way we obtain
a finite intersection property of certain family of sets
and using compactness argument, we prove the full
statement.

The other theorems can be proved by using the
same idea, but for different functions a and b.
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