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Abstract: In this paper, it is proved that, over certain real quadratic fields, there are no
elliptic curves having everywhere good reduction and cubic discriminant.
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1. Result. In [2], we showed that there are,
up to isomorphism over Q(

√
33), exactly six elliptic

curves with everywhere good reduction over Q(
√

33),
two of which have cubic discriminant, and that there
are no such curves over Q(

√
3p) if p = 19, 23 or 31.

In this paper, we refine some results in [2], and using
them, we prove the following:

Theorem. If p is a prime number such that
p ≡ 3 (mod 4) and p �= 3, 11, then there is no elliptic
curve which has everywhere good reduction over k =
Q(
√

3p) and whose discriminant is a cube in k.
2. Proof of Theorem. Theorem follows

from the following two propositions:
Proposition 1. Let k be a quadratic field in

which 3 does not split. If there is an elliptic curve
which has everywhere good reduction over k and ad-
mits a 3-isogeny defined over k, and whose discrim-
inant is a cube in k, then k is Q(

√
6) or Q(

√
33).

Proposition 2. Let p be a prime number such
that p �= 3 and p ≡ 3 (mod 4) and let k = Q(

√
3p).

Then every elliptic curve with everywhere good reduc-
tion over k whose discriminant is a cube in k admits
a 3-isogeny defined over k.

2.1. Proof of Proposition 1. For a num-
ber field k, we denote by hk, Ok and O×

k the class
number, the ring of integers and the group of units
of k, respectively.

Let k be as in Proposition 1. In [2], Proposition
1 is proved under the assumption that (hk, 6) = 1,
but without the requirement that 3 does not split in
k. The condition (hk, 6) = 1 is used, when 3 does
not split, only in solving the equation

X3 = 1 + 27v, X ∈ Ok, v ∈ O×
k .(1)
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Hence, to prove Proposition 1, it is enough to prove
the following:

Lemma 1. Let k be a quadratic field. Then
equation (1) has a solution only when k = Q(

√
6)

or Q(
√

33), in which cases, the only solutions are
(X, v) = (4 ±

√
6, 5 ± 2

√
6), (−(5 ±

√
33),−(23 ±

4
√

33)), respectively. Note that 5 + 2
√

6 (resp.
23 + 4

√
33) is the fundamental unit of Q(

√
6) (resp.

Q(
√

33)).
Proof. Taking the norm of (1), we have

x3 − y3 + 3xy + 1

= (x− y + 1)(x2 + y2 + 1 + xy + y − x)
= 729Nk/Q(v),

where x = Nk/Q(X), y = Trk/Q(X) ∈ Z. Reducing
modulo 4, we see that Nk/Q(v) = 1, whence we have

x− y + 1 = 3ae,

x2 + y2 + 1 + xy + y − x = 36−ae

for some a ∈ Z with 0 ≤ a ≤ 6 and e = ±1. Elimi-
nating x, we have

3y2 + (3a+1e− 3)y + (32a + 3− 3a+1e− 36−ae) = 0.

This is possible only when e = 1, a = 1, and y = 8 or
−10. Thus (Trk/Q(X), Nk/Q(X)) = (8, 10), that is
X = 4±

√
6, or (Trk/Q(X), Nk/Q(X)) = (−10,−8),

that is X = −(5±
√

33).
2.2. Proof of Proposition 2. The follow-

ing is proved in [2]:
Proposition 3. Let k be a real quadratic

field. Assume that the ray class number of k(
√
−3)

modulo (
√
−3) is not a multiple of 4. Then every

elliptic curve which has everywhere good reduction
over k and whose discriminant is a cube in k admits
a 3-isogeny defined over k.
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Thus, to prove Proposition 2, we prove that a
real quadratic field as in Proposition 2 satisfies the
assumption of Proposition 3. (Corollary 1 below.)
Note that, in [2], we checked this assumption using
the computer software KASH when p = 11, 19, 23 or
31.

Lemma 2. Let p and q be distinct primes
such that p ≡ q ≡ 3 (mod 4) and let k = Q(

√
pq).

Let ε be the fundamental unit of k greater than 1 and
let q be the prime ideal of k dividing q. Then
(i) hk is odd.
(ii) k(

√
−ε) = Q(

√−p,√−q).
(iii) ε ≡ (p/q) (mod q), where (·/·) is the Legendre

symbol. In particular, ε ≡ p (mod q) if q = 3.
Proof. (i) This is well-known (see Theorems

39 and 41 of [1] for example).
(ii) By (i), q is principal. Let π ∈ Ok be a generator
of q. Since ε > 1, k is real and k �= Q(

√
q), we have

q = π2ε2n+1 for some n ∈ Z, whence k(
√−q) =

k(
√
−ε).

(iii) We first show that ε ≡ ±1 (mod q), which is
equivalent to Trk/Q(ε)2 ≡ 4 (mod q) since Nk/Q(ε±
1) = 2±Trk/Q(ε). But this readily follows on writing
ε as ε = (Trk/Q(ε) + b

√
pq)/2, b ∈ Z.

Let K = k(
√
−ε) = Q(

√−p,√−q). By Theo-
rem 23 in [1], q splits in K if and only if there exists
an X ∈ Ok such that X2 ≡ −ε (mod q), which is
equivalent to ε ≡ −1 (mod q), since OK/q ∼= Z/qZ
and q ≡ 3 (mod 4). On the other hand, q splits in K
if and only if q splits in Q(

√−p), which is equivalent
to (p/q) = −1.

Corollary 1. Let p be a prime number such
that p ≡ 3 (mod 4) and p �= 3. Let k = Q(

√
3p) and

K = k(
√
−3). Then

(i) hK is odd.
(ii) The ray class number hK(

√
−3) of K modulo

(
√
−3) is 2hK or hK according as p≡ 1 (mod 3)

or p ≡ 2 (mod 3). In particular, hK(
√
−3) is

not a multiple of 4.
Proof. (i) From [1], Corollary 3 to Theorem

74, it follows that hK = hkhQ(
√−p)hQ(

√−3) =
hkhQ(

√−p), which is odd by Lemma 2 (i).
(ii) Let G := (OK/

√
−3OK)× and H :=

{x+
√
−3OK | x ∈ O×

K} ⊂ G. From the formula for

the ray class number (Theorem 1 of Chapter VI in
[3]), it follows that hK(

√
−3) = hK(G : H). Thus it

is enough to show that

(G : H) =

{
2 if p ≡ 1 (mod 3),
1 if p ≡ 2 (mod 3).

Let ζ6 = (1 +
√
−3)/2 be a primitive sixth root of

unity and ε > 1 the fundamental unit of k. Since
K = k(

√
−ε) by Lemma 2 (ii) and ζ6 ∈ K, we have

O×
K = 〈ζ6〉× 〈

√
−ε〉 (cf. [1], pp. 194, 195), and hence

H = 〈
√
−ε +

√
−3OK , ζ6 +

√
−3OK〉. Let q be the

prime ideal of k dividing 3.
Assume that p ≡ 1 (mod 3). Then, since

(−p/3) = −1, qOK =
√
−3OK is a prime ideal of

K and hence G is a cyclic group of order 8. Lemma
2 (iii) and the formulas

ζ6 − 1 = ζ2
6 , ζ2

6 − 1 =
√
−3ζ6(2)

imply that H = 〈
√
−ε +

√
−3OK〉 ∼= Z/4Z. Thus

(G : H) = 2.
Assume that p ≡ 2 (mod 3). By Lemma 2 (iii),

we have X2 + ε ≡ (X − 1)(X + 1) (mod q). Hence
by letting Q1 = (q,

√
−ε− 1), Q2 = (q,

√
−ε+ 1), it

follows from [1], Theorem 23 that
√
−3OK = qOK = Q1Q2,

G ∼= (OK/Q1)× × (OK/Q2)×

∼= (Z/3Z)× × (Z/3Z)×.

The definition of Qi (i = 1, 2) implies that√
−ε ≡ 1 (mod Q1) and

√
−ε ≡ −1 (mod Q2). Fur-

ther, (2) means that ζ6 ≡ −1 (mod Qi) (i = 1, 2).
Thus H ∼= (Z/3Z)××(Z/3Z)×, whence (G : H) = 1.
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