Nonexistence of elliptic curves having everywhere good reduction and cubic discriminant

By Takaaki Kagawa
Department of Mathematics, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga 525-8577
(Communicated by Heisuke Hironaka, m. J. a., Nov. 13, 2000)

Abstract

In this paper, it is proved that, over certain real quadratic fields, there are no elliptic curves having everywhere good reduction and cubic discriminant.

Key words: Elliptic curves; everywhere good reduction.

1. Result. In [2], we showed that there are, up to isomorphism over $\mathbf{Q}(\sqrt{33})$, exactly six elliptic curves with everywhere good reduction over $\mathbf{Q}(\sqrt{33})$, two of which have cubic discriminant, and that there are no such curves over $\mathbf{Q}(\sqrt{3 p})$ if $p=19,23$ or 31 . In this paper, we refine some results in [2], and using them, we prove the following:

Theorem. If p is a prime number such that $p \equiv 3(\bmod 4)$ and $p \neq 3,11$, then there is no elliptic curve which has everywhere good reduction over $k=$ $\mathbf{Q}(\sqrt{3 p})$ and whose discriminant is a cube in k.
2. Proof of Theorem. Theorem follows from the following two propositions:

Proposition 1. Let k be a quadratic field in which 3 does not split. If there is an elliptic curve which has everywhere good reduction over k and admits a 3-isogeny defined over k, and whose discriminant is a cube in k, then k is $\mathbf{Q}(\sqrt{6})$ or $\mathbf{Q}(\sqrt{33})$.

Proposition 2. Let p be a prime number such that $p \neq 3$ and $p \equiv 3(\bmod 4)$ and let $k=\mathbf{Q}(\sqrt{3 p})$. Then every elliptic curve with everywhere good reduction over k whose discriminant is a cube in k admits a 3-isogeny defined over k.
2.1. Proof of Proposition 1. For a number field k, we denote by h_{k}, \mathcal{O}_{k} and \mathcal{O}_{k}^{\times}the class number, the ring of integers and the group of units of k, respectively.

Let k be as in Proposition 1. In [2], Proposition 1 is proved under the assumption that $\left(h_{k}, 6\right)=1$, but without the requirement that 3 does not split in k. The condition $\left(h_{k}, 6\right)=1$ is used, when 3 does not split, only in solving the equation

$$
\begin{equation*}
X^{3}=1+27 v, \quad X \in \mathcal{O}_{k}, \quad v \in \mathcal{O}_{k}^{\times} . \tag{1}
\end{equation*}
$$

1991 Mathematics Subject Classification. 11G05.

Hence, to prove Proposition 1, it is enough to prove the following:

Lemma 1. Let k be a quadratic field. Then equation (1) has a solution only when $k=\mathbf{Q}(\sqrt{6})$ or $\mathbf{Q}(\sqrt{33})$, in which cases, the only solutions are $(X, v)=(4 \pm \sqrt{6}, 5 \pm 2 \sqrt{6}),(-(5 \pm \sqrt{33}),-(23 \pm$ $4 \sqrt{33}$)), respectively. Note that $5+2 \sqrt{6}$ (resp. $23+4 \sqrt{33}$) is the fundamental unit of $\mathbf{Q}(\sqrt{6})$ (resp. $\mathbf{Q}(\sqrt{33}))$.

Proof. Taking the norm of (1), we have

$$
\begin{aligned}
& x^{3}-y^{3}+3 x y+1 \\
& =(x-y+1)\left(x^{2}+y^{2}+1+x y+y-x\right) \\
& =729 N_{k / \mathbf{Q}}(v),
\end{aligned}
$$

where $x=N_{k / \mathbf{Q}}(X), y=\operatorname{Tr}_{k / \mathbf{Q}}(X) \in \mathbf{Z}$. Reducing modulo 4, we see that $N_{k / \mathbf{Q}}(v)=1$, whence we have

$$
\begin{aligned}
& x-y+1=3^{a} e \\
& x^{2}+y^{2}+1+x y+y-x=3^{6-a} e
\end{aligned}
$$

for some $a \in \mathbf{Z}$ with $0 \leq a \leq 6$ and $e= \pm 1$. Eliminating x, we have
$3 y^{2}+\left(3^{a+1} e-3\right) y+\left(3^{2 a}+3-3^{a+1} e-3^{6-a} e\right)=0$.
This is possible only when $e=1, a=1$, and $y=8$ or -10 . Thus $\left(\operatorname{Tr}_{k / \mathbf{Q}}(X), N_{k / \mathbf{Q}}(X)\right)=(8,10)$, that is $X=4 \pm \sqrt{6}$, or $\left(\operatorname{Tr}_{k / \mathbf{Q}}(X), N_{k / \mathbf{Q}}(X)\right)=(-10,-8)$, that is $X=-(5 \pm \sqrt{33})$.
2.2. Proof of Proposition 2. The following is proved in [2]:

Proposition 3. Let k be a real quadratic field. Assume that the ray class number of $k(\sqrt{-3})$ modulo $(\sqrt{-3})$ is not a multiple of 4 . Then every elliptic curve which has everywhere good reduction over k and whose discriminant is a cube in k admits a 3-isogeny defined over k.

Thus, to prove Proposition 2, we prove that a real quadratic field as in Proposition 2 satisfies the assumption of Proposition 3. (Corollary 1 below.) Note that, in [2], we checked this assumption using the computer software KASH when $p=11,19,23$ or 31.

Lemma 2. Let p and q be distinct primes such that $p \equiv q \equiv 3(\bmod 4)$ and let $k=\mathbf{Q}(\sqrt{p q})$. Let ε be the fundamental unit of k greater than 1 and let \mathfrak{q} be the prime ideal of k dividing q. Then
(i) h_{k} is odd.
(ii) $k(\sqrt{-\varepsilon})=\mathbf{Q}(\sqrt{-p}, \sqrt{-q})$.
(iii) $\varepsilon \equiv(p / q)(\bmod \mathfrak{q})$, where (\cdot / \cdot) is the Legendre symbol. In particular, $\varepsilon \equiv p(\bmod \mathfrak{q})$ if $q=3$.
Proof. (i) This is well-known (see Theorems 39 and 41 of [1] for example).
(ii) $\mathrm{By}(\mathrm{i}), \mathfrak{q}$ is principal. Let $\pi \in \mathcal{O}_{k}$ be a generator of \mathfrak{q}. Since $\varepsilon>1, k$ is real and $k \neq \mathbf{Q}(\sqrt{q})$, we have $q=\pi^{2} \varepsilon^{2 n+1}$ for some $n \in \mathbf{Z}$, whence $k(\sqrt{-q})=$ $k(\sqrt{-\varepsilon})$.
(iii) We first show that $\varepsilon \equiv \pm 1(\bmod \mathfrak{q})$, which is equivalent to $\operatorname{Tr}_{k / \mathbf{Q}}(\varepsilon)^{2} \equiv 4(\bmod q)$ since $N_{k / \mathbf{Q}}(\varepsilon \pm$ $1)=2 \pm \operatorname{Tr}_{k / \mathbf{Q}}(\varepsilon)$. But this readily follows on writing ε as $\varepsilon=\left(\operatorname{Tr}_{k / \mathbf{Q}}(\varepsilon)+b \sqrt{p q}\right) / 2, b \in \mathbf{Z}$.

Let $K=k(\sqrt{-\varepsilon})=\mathbf{Q}(\sqrt{-p}, \sqrt{-q})$. By Theorem 23 in [1], \mathfrak{q} splits in K if and only if there exists an $X \in \mathcal{O}_{k}$ such that $X^{2} \equiv-\varepsilon(\bmod \mathfrak{q})$, which is equivalent to $\varepsilon \equiv-1(\bmod \mathfrak{q})$, since $\mathcal{O}_{K} / \mathfrak{q} \cong \mathbf{Z} / q \mathbf{Z}$ and $q \equiv 3(\bmod 4)$. On the other hand, \mathfrak{q} splits in K if and only if q splits in $\mathbf{Q}(\sqrt{-p})$, which is equivalent to $(p / q)=-1$.

Corollary 1. Let p be a prime number such that $p \equiv 3(\bmod 4)$ and $p \neq 3$. Let $k=\mathbf{Q}(\sqrt{3 p})$ and $K=k(\sqrt{-3})$. Then
(i) h_{K} is odd.
(ii) The ray class number $h_{K}(\sqrt{-3})$ of K modulo $(\sqrt{-3})$ is $2 h_{K}$ or h_{K} according as $p \equiv 1(\bmod 3)$ or $p \equiv 2(\bmod 3)$. In particular, $h_{K}(\sqrt{-3})$ is not a multiple of 4 .
Proof. (i) From [1], Corollary 3 to Theorem 74, it follows that $h_{K}=h_{k} h_{\mathbf{Q}(\sqrt{-p})} h_{\mathbf{Q}(\sqrt{-3})}=$ $h_{k} h_{\mathbf{Q}(\sqrt{-p})}$, which is odd by Lemma 2 (i).
(ii) Let $G:=\left(\mathcal{O}_{K} / \sqrt{-3} \mathcal{O}_{K}\right)^{\times}$and $H:=$ $\left\{x+\sqrt{-3} \mathcal{O}_{K} \mid x \in \mathcal{O}_{K}^{\times}\right\} \subset G$. From the formula for
the ray class number (Theorem 1 of Chapter VI in [3]), it follows that $h_{K}(\sqrt{-3})=h_{K}(G: H)$. Thus it is enough to show that

$$
(G: H)=\left\{\begin{array}{lll}
2 & \text { if } p \equiv 1 & (\bmod 3) \\
1 & \text { if } p \equiv 2 & (\bmod 3)
\end{array}\right.
$$

Let $\zeta_{6}=(1+\sqrt{-3}) / 2$ be a primitive sixth root of unity and $\varepsilon>1$ the fundamental unit of k. Since $K=k(\sqrt{-\varepsilon})$ by Lemma 2 (ii) and $\zeta_{6} \in K$, we have $\mathcal{O}_{K}^{\times}=\left\langle\zeta_{6}\right\rangle \times\langle\sqrt{-\varepsilon}\rangle$ (cf. [1], pp. 194, 195), and hence $H=\left\langle\sqrt{-\varepsilon}+\sqrt{-3} \mathcal{O}_{K}, \zeta_{6}+\sqrt{-3} \mathcal{O}_{K}\right\rangle$. Let \mathfrak{q} be the prime ideal of k dividing 3 .

Assume that $p \equiv 1(\bmod 3)$. Then, since $(-p / 3)=-1, \mathfrak{q} \mathcal{O}_{K}=\sqrt{-3} O_{K}$ is a prime ideal of K and hence G is a cyclic group of order 8. Lemma 2 (iii) and the formulas

$$
\begin{equation*}
\zeta_{6}-1=\zeta_{6}^{2}, \quad \zeta_{6}^{2}-1=\sqrt{-3} \zeta_{6} \tag{2}
\end{equation*}
$$

imply that $H=\left\langle\sqrt{-\varepsilon}+\sqrt{-3} \mathcal{O}_{K}\right\rangle \cong \mathbf{Z} / 4 \mathbf{Z}$. Thus $(G: H)=2$.

Assume that $p \equiv 2(\bmod 3)$. By Lemma 2 (iii), we have $X^{2}+\varepsilon \equiv(X-1)(X+1)(\bmod \mathfrak{q})$. Hence by letting $\mathfrak{Q}_{1}=(\mathfrak{q}, \sqrt{-\varepsilon}-1), \mathfrak{Q}_{2}=(\mathfrak{q}, \sqrt{-\varepsilon}+1)$, it follows from [1], Theorem 23 that

$$
\begin{aligned}
\sqrt{-3} \mathcal{O}_{K} & =\mathfrak{q} \mathcal{O}_{K}=\mathfrak{Q}_{1} \mathfrak{Q}_{2} \\
G & \cong\left(\mathcal{O}_{K} / \mathfrak{Q}_{1}\right)^{\times} \times\left(\mathcal{O}_{K} / \mathfrak{Q}_{2}\right)^{\times} \\
& \cong(\mathbf{Z} / 3 \mathbf{Z})^{\times} \times(\mathbf{Z} / 3 \mathbf{Z})^{\times}
\end{aligned}
$$

The definition of $\mathfrak{Q}_{i}(i=1,2)$ implies that $\sqrt{-\varepsilon} \equiv 1\left(\bmod \mathfrak{Q}_{1}\right)$ and $\sqrt{-\varepsilon} \equiv-1\left(\bmod \mathfrak{Q}_{2}\right)$. Further, (2) means that $\zeta_{6} \equiv-1\left(\bmod \mathfrak{Q}_{i}\right)(i=1,2)$. Thus $H \cong(\mathbf{Z} / 3 \mathbf{Z})^{\times} \times(\mathbf{Z} / 3 \mathbf{Z})^{\times}$, whence $(G: H)=1$.

References

[1] Fröhlich, A., and Taylor, M. J.: Algebraic number theory. Cambridge Stud. Adv. Math., 27, Cambridge Univ. Press, Cambridge (1991).
[2] Kagawa, T.: Determination of elliptic curves with everywhere good reduction over real quadratic fields $\mathbf{Q}(\sqrt{3 p})$. Acta Arith. (to appear).
[3] Lang, S.: Algebraic Number Theory. 2nd ed., Grad. Texts in Math., 110, Springer, Berlin-Heidelberg-New York (1994).

